

Series 5 - October 16, 2024

Exercise 1.

Let $g: [0,T] \to \mathbb{R}$ be a continuous function and let b > 0 and $X_0 \in L^2(\Omega)$. Compute the solution of the following SDE for $t \in [0,T]$

$$\begin{split} \mathrm{d}X(t) &= -bX(t)\mathrm{d}t + g(t)\mathrm{d}W(t),\\ X(0) &= X_0. \end{split}$$

Exercise 2.

Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and solve the *n*-dimensional SDE for $t \in [0, T]$

$$dX(t) = AX(t)dt + BdW(t), (2.1)$$

with initial condition $X(0) = X_0$ and where W is an m-dimensional Brownian motion. Hint. Generalize the one-dimensional case presented in the previous exercises.

Exercise 3.

For $X_0 = \begin{pmatrix} X_0^1 & X_0^2 \end{pmatrix}^{\top} \in (L^2(\Omega))^2$, solve the system of SDEs for $t \in [0, T]$

$$dX_1(t) = X_2(t)dt + dW_1(t), dX_2(t) = X_1(t)dt + dW_2(t),$$
(3.1)

with initial condition $X(0) = X_0$ and where W_1 and W_2 are two independent one-dimensional Brownian motions.

Hint. Use Exercise 1 or consider the processes

$$Y_1(t) = X_1(t) + X_2(t),$$

 $Y_2(t) = X_1(t) - X_2(t).$ (3.2)

Exercise 4.

We recall that for random vectors $X \in \mathbb{R}^k$, $Y \in \mathbb{R}^m$ that are jointly Gaussian

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \mathcal{N} \left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} C_X & C_{XY} \\ C_{YX} & C_Y \end{pmatrix} \right), \tag{4.1}$$

the conditional distribution of X given Y is also Gaussian with the following distribution

$$X|Y \sim \mathcal{N}(\mu_X + C_{XY}C_Y^{-1}(Y - \mu_Y), C_X - C_{XY}C_Y^{-1}C_{YX})$$
(4.2)

- 1) Let $\{B_t\}_{t\in[0,T]}$ be a Brownian motion on $(\Omega,\mathcal{F},P,(\mathcal{F})_{t\geqslant0})$. What is the conditional distribution of B given $B_1=0$? The Gaussian process with such a distribution is called a Browian bridge.
- 2) Consider the stochastic process $\hat{B}_t = B_t tB_1$. Show that \hat{B}_t is a Gaussian process and has the distribution of a Brownian bridge.

3) Define the process W_t as $dW_t = dB_t - \frac{B_1 - B_t}{1 - t} dt$. Show that W_t is a Brownian motion with respect to the filtration $\tilde{\mathcal{F}}_t = \sigma(B_u, \ u \leqslant t) \cup \sigma(B_1)$

Hint. To show that $W_t - W_s$ is independent of $\tilde{\mathcal{F}}_s$ it is enough to show that $\mathbb{E}[(W_t - W_s)B_u] = 0$ for all $u \leq s$ and u = 1 since all variables are Gaussian (hence uncorrelation is equivalent to independence).

4) Consider now the SDE

$$d\xi_t = -\frac{\xi_t}{1-t}dt + dW_t, \tag{4.3}$$

 $\xi_0=0$ with W_t as in the previous point. Solve explicitly this SDE. Show that $\{\xi_t\}_{t\in[0,1]}$ is a Gaussian process and has the distribution of a Brownian bridge. What is the relation between $\{\xi_t\}_{t\in[0,1]}$ and the process $\hat{B}_t=B_t-tB_1$ of point 2)?

Hint. Write the stochastic differential of \hat{B}_t and replace dB_t with dW_t .

Exercise 5.

Consider the SDE

$$d\xi_t = b(\xi_t, t)dt + \sigma(\xi_t, t)dB_t$$

$$\xi_0 = x$$
(5.1)

with the standard assumptions on $b: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^d$, $\sigma: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^{d \times m}$ (global Lipschitz and linear growth bound with constant M).

1) Suppose that σ is bounded, i.e. $\exists k > 0$ such that $\|\sigma(x,t)\|_F \leqslant k$, for all x,t. Show that for any T > 0 there exists $c_T > 0$ such that for R large enough

$$P(\sup_{0 \le t \le T} |\xi_t| > R) \le e^{-c_T R^2},\tag{5.2}$$

i.e. the process has Gaussian tails.

Hint. use L^1 type bounds on $|\xi_t|$ on the set $A = \left\{\sup_{0 \le t \le T} \left| \int_0^t \sigma(\xi_s, s) dB_s \right| \ge \rho \right\}$ and the following exponential martingale inequality to bound P(A): let $G \in M^2([0, T], \mathbb{R}^{d \times m})$ be s.t.

$$\int_0^T \theta^\top G_s G_s^\top \theta ds \leqslant c |\theta|^2$$

for all $\theta \in \mathbb{R}^d$, and $I_t = \int_0^t G_s dB_s$. Then

$$P\left(\sup_{0 \leqslant t \leqslant T} |I_t| \geqslant \rho\right) \leqslant 2de^{-\frac{\rho^2}{2cd}}.$$

2) Show that $\sup_{0\leqslant t\leqslant T}|\xi_t|$ has all exponential moments finite i.e. $\mathbb{E}[\exp\{\lambda\sup_{0\leqslant t\leqslant T}|\xi_t|\}]<\infty$ for every $\lambda>0$. Moreover, there exists $c^*>0$ such that

$$\mathbb{E}\bigg[\exp\{c\sup_{0\leqslant t\leqslant T}|\xi_t|^2\}\bigg]<+\infty$$

for all $c < c^*$.

Hint. Use that for a positive random variable x with $g \in C^1(\mathbb{R}_+, \mathbb{R})$ we have $\mathbb{E}[g(x)] = g(0) + \int_0^\infty g'(s)P(x \ge s)ds$

3) Remove the assumption of boundedness for σ . Show that for every T > 0, there exists a constant $c = c_T > 0$ such that for R large enough

$$P\left(\sup_{0 \le t \le T} |\xi_t| > R\right) \le \frac{1}{R^{c \log R}}.$$

Hint. Write the stochastic differential of $Y_t = u(\xi_t)$ for $u(x) = \log(1 + |x|^2)$ and observe that $b^{\top}(\xi_t, t) \nabla u(\xi_t)$, $\sigma(\xi_t, t) \sigma^{\top}(\xi_t, t) : \nabla^2 u(\xi_t)$, $\sigma_{:,k}(\xi_t, t) \cdot \nabla u(\xi_t)$ k = 1, ..., m are all bounded functions.