

Series 5 - October 16, 2024

Exercise 1.

Let $g: [0,T] \to \mathbb{R}$ be a continuous function and let b > 0 and $X_0 \in L^2(\Omega)$. Compute the solution of the following SDE for $t \in [0,T]$

$$\begin{split} \mathrm{d}X(t) &= -bX(t)\mathrm{d}t + g(t)\mathrm{d}W(t),\\ X(0) &= X_0. \end{split}$$

Solution

We apply the variation of constants method. First, we find the solution of the homogeneous equation, which is $X(t) = P(t)X_0$ and then we look for a particular solution Y(t). We consider the integrating factor

$$P^{-1}(t) = e^{-\left(\int_0^t -b ds\right)} = e^{bt}$$

and considering a particular solution of the form

$$Y(t) = P^{-1}(t)X(t).$$

Then

$$\begin{split} \mathrm{d}Y_t = &[P^{-1}(t)]'X(t)\mathrm{d}t + P^{-1}(t)\mathrm{d}X(t) \\ &= be^{bt}X(t)\mathrm{d}t + e^{bt}(-bX(t)\mathrm{d}t + g(t)\mathrm{d}W(t)) \\ &= e^{bt}g(t)\mathrm{d}W(t). \end{split}$$

Hence

$$X(t)=X_0e^{-bt}+\int_0^te^{-b(t-s)}g(s)\mathrm{d}W(s).$$

Exercise 2.

Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and solve the *n*-dimensional SDE for $t \in [0,T]$

$$dX(t) = AX(t)dt + BdW(t), (2.1)$$

with initial condition $X(0) = X_0$ and where W is an m-dimensional Brownian motion. Hint. Generalize the one-dimensional case presented in the previous exercises.

Solution

We generalize the one-dimensional solution as

$$X(t)=e^{At}X_0+\int_0^t e^{A(t-s)}B\mathrm{d}W(s).$$

We now prove using the Itô formula that it is indeed a solution. We have

$$Y(t) = e^{-At}X(t) = X_0 + \int_0^t e^{-As}B \mathrm{d}W(s),$$

hence the process $(Y(t), 0 \le t \le T)$ has the differential

$$dY(t) = e^{-At}BdW(t).$$

Let us now consider the function $u \colon \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ defined as

$$u(t,x) = e^{At}x,$$

so that X(t) = u(t, Y(t)). We can apply the multidimensional Itô formula to each of the components of u(t, Y(t)). The partial derivatives are given by

$$\begin{split} \partial_t(u(t,x)_i) &= \sum_{k,l=1}^n A_{ik}(e^{At})_{kl} x_l, \qquad i=1,\dots,n, \\ \partial_{x_j}(u(t,x)_i) &= (e^{At})_{ij}, \qquad \qquad i,j=1,\dots,n, \\ \partial_{x_ix_k}(u(t,x)_i) &= 0, \qquad \qquad i,j,k=1,\dots,n. \end{split}$$

Hence, we have

$$\begin{split} (\mathrm{d}X(t))_i &= \mathrm{d}(u(t,Y(t)))_i = \sum_{k,l=1}^n A_{ik}(e^{At})_{kl}Y(t)_l\mathrm{d}t + \sum_{j=1}^n (e^{At})_{ij}\mathrm{d}Y(t)_j \\ &= \sum_{k,l=1}^n A_{ik}(e^{At})_{kl}Y(t)_l\mathrm{d}t + \sum_{j,k=1}^n \sum_{l=1}^m (e^{At})_{ij}(e^{-At})_{jk}B_{kl}\mathrm{d}W(t)_l \\ &= (Ae^{At}e^{-At}X(t))_i\mathrm{d}t + (e^{At}e^{-At}B\mathrm{d}W(t))_i \\ &= (AX(t))_i\mathrm{d}t + (B\mathrm{d}W(t))_i, \end{split}$$

which proves that X(t) is a solution.

Exercise 3.

For $X_0 = \begin{pmatrix} X_0^1 & X_0^2 \end{pmatrix}^{\top} \in (\mathrm{L}^2(\Omega))^2$, solve the system of SDEs for $t \in [0,T]$

$$dX_1(t) = X_2(t)dt + dW_1(t), dX_2(t) = X_1(t)dt + dW_2(t),$$
(3.1)

with initial condition $X(0) = X_0$ and where W_1 and W_2 are two independent one-dimensional Brownian motions.

Hint. Use Exercise 1 or consider the processes

$$Y_1(t) = X_1(t) + X_2(t),$$

$$Y_2(t) = X_1(t) - X_2(t).$$
(3.2)

Solution

We consider the previous exercise with n = m = 2 and A, B given by

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

We have now to compute $\exp(At)$. This can be done by diagonalizing A on an orthonormal basis as

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \frac{\sqrt{2}}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}^\top = U \Lambda U^\top,$$

which yields through $\exp(At) = U \exp(\Lambda t) U^{\top}$

$$e^{At} = \frac{1}{2} \begin{pmatrix} e^t + e^{-t} & e^t - e^{-t} \\ e^t - e^{-t} & e^t + e^{-t} \end{pmatrix}.$$

Otherwise, one can compute

$$\exp(At) = \sum_{j=0}^{\infty} \frac{(At)^j}{j!}.$$

Noticing that

$$(At)^{j} = t^{j} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{if } j \text{ even,}$$
$$(At)^{j} = t^{j} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \text{if } j \text{ odd,}$$

we have

$$\begin{split} e^{At} &= \sum_{j=0}^{\infty} \frac{1}{(2j)!} \binom{t^{2j}}{0} \binom{0}{t^{2j}} + \sum_{j=0}^{\infty} \frac{1}{(2j+1)!} \binom{0}{t^{2j+1}} \binom{t^{2j+1}}{0} \\ &= \binom{\cosh t}{0} \binom{0}{\cosh t} + \binom{0}{\sinh t} \binom{\sinh t}{0} \\ &= \frac{1}{2} \binom{e^t + e^{-t}}{e^t - e^{-t}} \binom{e^t - e^{-t}}{e^t + e^{-t}}. \end{split}$$

Plugging into the solution of the general equation the value of $\exp(At)$, we obtain

$$\begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (e^t + e^{-t})X_0^1 + (e^t - e^{-t})X_0^2 \\ (e^t - e^{-t})X_0^1 + (e^t + e^{-t})X_0^2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \int_0^t (e^{t-s} + e^{s-t}) dW_1(s) \\ \int_0^t (e^{t-s} + e^{s-t}) dW_2(s) \end{pmatrix}.$$
 (3.3)

Alternatively, the processes $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ satisfy

$$\begin{split} \mathrm{d}Y_1(t) &= Y_1 \mathrm{d}t + \sqrt{2} \mathrm{d}\widetilde{W}_1(t), \qquad Y_1(0) = X_1(0) + X_2(0), \\ \mathrm{d}Y_2(t) &= -Y_2 \mathrm{d}t + \sqrt{2} \mathrm{d}\widetilde{W}_2(t), \quad Y_2(0) = X_1(0) - X_2(0). \end{split}$$

where $\widetilde{W}_1=(W_1+W_2)/\sqrt{2}$ and $\widetilde{W}_2=(W_1-W_2)/\sqrt{2}$. We have by Series 8 Ex. 3 (or 6)

$$Y_1(t) = Y_1(0) + \int_0^t e^{t-s} \sqrt{2} d\widetilde{W}_1(s),$$

$$Y_2(t) = Y_2(0) + \int_0^t e^{-(t-s)} \sqrt{2} d\widetilde{W}_2(t).$$

Computing $X_1=(Y_1+Y_2)/2$ and $X_2=(Y_1-Y_2)/2$ one obtains the same result as (3.3).

Exercise 4.

We recall that for random vectors $X \in \mathbb{R}^k$, $Y \in \mathbb{R}^m$ that are jointly Gaussian

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \mathcal{N} \begin{pmatrix} \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} C_X & C_{XY} \\ C_{YX} & C_Y \end{pmatrix} \end{pmatrix}, \tag{4.1}$$

the conditional distribution of X given Y is also Gaussian with the following distribution

$$X|Y \sim \mathcal{N}(\mu_X + C_{XY}C_Y^{-1}(Y - \mu_Y), C_X - C_{XY}C_Y^{-1}C_{YX})$$
(4.2)

1) Let $\{B_t\}_{t\in[0,T]}$ be a Brownian motion on $(\Omega,\mathcal{F},P,(\mathcal{F})_{t\geqslant0})$. What is the conditional distribution of B given $B_1=0$? The Gaussian process with such a distribution is called a Browian bridge.

- 2) Consider the stochastic process $\hat{B}_t = B_t tB_1$. Show that \hat{B}_t is a Gaussian process and has the distribution of a Brownian bridge.
- 3) Define the process W_t as $dW_t = dB_t \frac{B_1 B_t}{1 t} dt$. Show that W_t is a Brownian motion with respect to the filtration $\tilde{\mathcal{F}}_t = \sigma(B_u, \ u \leq t) \cup \sigma(B_1)$

Hint. To show that $W_t - W_s$ is independent of $\tilde{\mathcal{F}}_s$ it is enough to show that $\mathbb{E}[(W_t - W_s)B_u] = 0$ for all $u \leq s$ and u = 1 since all variables are Gaussian (hence uncorrelation is equivalent to independence).

4) Consider now the SDE

$$d\xi_t = -\frac{\xi_t}{1-t}dt + dW_t, \tag{4.3}$$

 $\xi_0=0$ with W_t as in the previous point. Solve explicitly this SDE. Show that $\{\xi_t\}_{t\in[0,1]}$ is a Gaussian process and has the distribution of a Brownian bridge. What is the relation between $\{\xi_t\}_{t\in[0,1]}$ and the process $\hat{B}_t=B_t-tB_1$ of point 2)?

Hint. Write the stochastic differential of \hat{B}_t and replace dB_t with dW_t .

Solution

1) We apply formula (4.2) to $X = (B_{t_1}, \dots, B_{t_m}), Y = B_1$. We have $C_Y = 1$ whereas, since $Cov(B_{t_i}, B_1) = t_i \wedge 1 = t_i$,

$$C_{X,Y} = \left(\begin{array}{c} t_1 \\ \vdots \\ t_m \end{array}\right)$$

and

$$C_{X,Y}C_Y^{-1}C_{X,Y}^T = \left(\begin{array}{c} t_1 \\ \vdots \\ t_m \end{array}\right)(t_1 \dots t_m)$$

the matrix $C_{X,Y}C_Y^{-1}C_{X,Y}^T$ has t_it_j as its (i,j)-th entry. As C_X is the matrix $\left(t_i \wedge t_j\right)_{i,j}$, the conditional law is Gaussian with covariance matrix $C_X - C_{X,Y}C_Y^{-1}C_{X,Y} = \left(t_i \wedge t_j - t_it_j\right)_{i,j}$, i.e.

$$C := \left(\begin{array}{cccc} t_1(1-t_1) & t_1(1-t_2) & \dots t_1(1-t_m) \\ t_1(1-t_2) & t_2(1-t_2) & \dots t_2(1-t_m) \\ & \ddots & \\ t_1(1-t_m) & t_2(1-t_m) & \dots t_m(1-t_m) \end{array} \right)$$

and mean (here E[X] = 0, E[Y] = 0)

$$C_{X,Y}C_Y^{-1}Y = \begin{pmatrix} t_1 \\ \vdots \\ t_m \end{pmatrix} B_1 \tag{4.4}$$

Let us denote $\{\hat{B}_t\}_{t\in[0,T]}$ the conditional process. The previous calculation shows that all finite dimensional distributions are Gaussian and $\hat{X}=\left(\hat{B}_{t_1},\ldots,\hat{B}_{t_m}\right)=X|Y=0\sim\mathcal{N}(0,C)$ with C defined in (1). Hence the process \hat{B} is Gaussian with mean $\mu_{\hat{B}}=0$ and covariance $\operatorname{Cov}_{\hat{B}}(s,t)=s\wedge t-st$.

2) Let $0 \le t_1 < \dots < t_m \le 1$. Clearly, \hat{B}_t is a Gaussian process (all finite dimensional distributions are Gaussian). A straightforward calculation $\mathbb{E}[\hat{B}_t] = 0$ and $\operatorname{Cov}_{\hat{B}}(s,t) = \mathbb{E}[(B_s - sB_1)(B_t - tB_1)] = s \wedge t - st$, which coincide with the mean and the covariance of a Brownian bridge."

3) For the first property of the Brownian motion (independent increments), as the r.v.'s $W_t - W_s$, B_1 , B_v , z_v , $v \leqslant s$ form a Gaussian family, it suffices to show that $W_t - W_s$ is orthogonal to B_v , $0 \leqslant v \leqslant s$, and to B_1 . We have

$$\mathrm{E}[(W_t - W_s)B_1] = \mathrm{E}[(B_t - B_s)B_1] - \int_s^t \frac{\mathrm{E}[(B_1 - B_u)B_1]}{1 - u} du = t - s - \int_s^t du = 0$$

and, for $v \leq s$,

$$E[(W_t - W_s)B_v] = E[(B_t - B_s)B_v] - \int_s^t \frac{E[(B_1 - B_u)B_v]}{1 - u} du = 0$$

For the second property (Gaussian increments) clearly $\{W_t\}$ is a Gaussian process so we just need to check that it has the covariance of a Brownian motion. Let us prove that $\mathrm{E}[W_tW_s]=s,$ for $0\leqslant s\leqslant t.$ This is elementary, albeit laborious. If $s< t\leqslant 1,$ note that $\mathrm{E}[W_tW_s]=\mathrm{E}[(W_t-W_s)W_s]+\mathrm{E}[W_s^2]=\mathrm{E}[W_s^2],$ thanks to the previous property. Hence we are reduced to the computation of

$$\begin{split} \mathbf{E}[W_s^2] &= \mathbf{E}(B_s^2) - 2\int_0^s \mathbf{E}\Big[B_s \frac{B_1 - B_u}{1 - u}\Big] du + \int_0^s dv \int_0^s \mathbf{E}\Big[\frac{B_1 - B_v}{1 - v} \frac{B_1 - B_u}{1 - u}\Big] du \\ &= s - 2\int_0^s \frac{s - u}{1 - u} du + \int_0^s dv \int_0^s \frac{1 - u - v + u \wedge v}{(1 - v)(1 - u)} du \\ &= s - 2I_1 + I_2 \end{split}$$

With patience one can compute I_2 and find that it is equal to $2I_1$, which gives the result. The simplest way to check that $I_2 = 2I_1$ is to observe that the integrand in I_2 is a function of (u, v) that is symmetric in u, v. Hence

$$I_2 = \int_0^s dv \int_0^s \frac{1 - u - v + u \wedge v}{(1 - v)(1 - u)} du = 2 \iint_{v \leqslant u} \frac{1 - u - v + u \wedge v}{(1 - v)(1 - u)} du dv$$
$$= 2 \int_0^s dv \int_v^s \frac{1 - u}{(1 - v)(1 - u)} du = 2 \int_0^s \frac{s - v}{1 - v} dv = 2I_1$$

Hence $\mathrm{E}[W_tW_s] = s \wedge t$. If $s \leqslant t$, the r.v. $W_t - W_s$ is centered Gaussian as $(W_t)_t$ is clearly a centered Gaussian process, which together with the first property, completes the proof that W is a $(\hat{\mathcal{F}}_t)_t$ -Brownian motion.

Finally, we have

$$dB_t = A_t dt + dW_t$$

with

$$A_t = \frac{B_1 - B_t}{1 - t}.$$

Hence, since A is adapted to $(\hat{\mathcal{F}}_t)$, B is an Ito process with respect to the new Brownian motion W.

4) Let us follow the idea of the variation of constants applied to a general SDE. More precisely, we formally consider a general SDE

$$\begin{aligned} x_t' &= b(t)x_t + \sigma(t)dB_t \\ x_0 &= x \end{aligned} \tag{4.5}$$

as an ordinary differential equation where the noise is considered as a external force term. The solution of the ordinary differential equation without noise

$$x_t' = b(t)x_t$$

$$x_0 = x$$

is $x_t = e^{\Lambda(t)}x$, where $\Lambda(t) = \int_0^t b(s)ds$. Let us look for a solution of the form $x_t = e^{\Lambda(t)}C(t)$ for (4.5). One sees easily that C must be the solution of

$$e^{\Lambda(t)}dC(t) = \sigma(t)dB_t$$

i.e.

$$C(t) = \int_0^t e^{-\Lambda(s)} \sigma(s) dB_s$$

The solution is therefore

$$\xi_t = \mathrm{e}^{A(t)} \xi_0 + \mathrm{e}^{A(t)} \int_0^t \mathrm{e}^{-A(s)} \sigma(s) dW_s$$

As the stochastic integral of a deterministic function is, as a function of the integration endpoint, a Gaussian process, ξ is Gaussian. Obviously $E(\xi_t) = e^{A(t)}\xi_0$. Let us compute its covariance function. Let $s \leq t$ and let

$$Y_t = e^{\Lambda(t)} \int_0^t e^{-\Lambda(s)} \sigma(s) dB_s$$

Then,

$$\begin{split} \operatorname{Cov}(\xi_t,\xi_s) &= \operatorname{E}(Y_tY_s^*) \\ &= \operatorname{E}\bigg[\operatorname{e}^{A(t)}\int_0^t \operatorname{e}^{-A(u)}\sigma(u)dB_u \bigg(\operatorname{e}^{A(s)}\int_0^s \operatorname{e}^{-A(v)}\sigma(v)dB_v\bigg)^*\bigg] \\ &= \operatorname{e}^{A(t)}\operatorname{E}\bigg[\int_0^t \operatorname{e}^{-A(u)}\sigma(u)dB_u \bigg(\int_0^s \operatorname{e}^{-A(v)}\sigma(v)dB_v\bigg)^*\bigg]\operatorname{e}^{A(s)^*} \\ &= \operatorname{e}^{A(t)}\int_0^s \operatorname{e}^{-A(u)}\sigma(u)\sigma^*(u)\operatorname{e}^{-A(u)^*}du\operatorname{e}^{A(s)^*} \end{split}$$

In particular, if m = 1 the covariance is

$$e^{\Lambda(t)}e^{\Lambda(s)}\int_0^s e^{-2\Lambda(u)}\sigma^2(u)du$$

Therefore, for (4.3) we have

$$\varLambda(t) = \int_0^t -\frac{1}{1-s} ds = \log(1-t)$$

Therefore $e^{A(t)} = 1 - t$ and the solution of (9.47) is

$$\xi_t = (1-t)\xi_0 + (1-t)\int_0^t \frac{dW_s}{1-s}$$

Hence $E[\xi_t] = (1-t)\xi_0$. ξ is a Gaussian process with covariance function

$$K(t,s) = (1-t)(1-s)\int_0^s \frac{1}{(1-u)^2} du = (1-t)(1-s) \left(\frac{1}{1-s} - 1\right) = s(1-t)$$

for $s \leq t$. If x = 0, then $E(\xi_t) = 0$ for every t and the process has the same mean and covariance functions as a Brownian bridge.

Finally, one has

$$d\hat{B}_{t} = dB_{t} - B_{1}$$

$$= dW_{t} + \frac{B_{1} - B_{t}}{1 - t}dt - B_{1}$$

$$= \frac{tB_{1} - B_{t}}{1 - t}dt + dW_{t}$$

$$= -\frac{\hat{B}_{t}}{1 - t}dt + dW_{t}$$
(4.6)

Thus, \hat{B} solves (4.3).

Exercise 5.

Consider the SDE

$$d\xi_t = b(\xi_t, t)dt + \sigma(\xi_t, t)dB_t$$

$$\xi_0 = x$$
(5.1)

with the standard assumptions on $b: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^d$, $\sigma: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^{d \times m}$ (global Lipschitz and linear growth bound with constant M).

1) Suppose that σ is bounded, i.e. $\exists k > 0$ such that $\|\sigma(x,t)\|_F \leq k$, for all x,t. Show that for any T > 0 there exists $c_T > 0$ such that for R large enough

$$P(\sup_{0 \le t \le T} |\xi_t| > R) \le e^{-c_T R^2},\tag{5.2}$$

i.e. the process has Gaussian tails.

 $\label{eq:hint.} \textit{Hint.} \text{ use } L^1 \text{ type bounds on } |\xi_t| \text{ on the set } A = \left\{\sup_{0\leqslant t\leqslant T} \left|\int_0^t \sigma(\xi_s,s)dB_s\right| \geqslant \rho\right\} \text{ and the following exponential martingale inequality to bound } P(A)\text{: let } G \in M^2([0,T],\mathbb{R}^{d\times m}) \text{ be s.t.}$

$$\int_0^T \theta^\top G_s G_s^\top \theta ds \leqslant c |\theta|^2$$

for all $\theta \in \mathbb{R}^d$, and $I_t = \int_0^t G_s dB_s$. Then

$$\mathbf{P}\left(\sup_{0\leqslant t\leqslant T}|I_t|\geqslant\rho\right)\leqslant 2d\mathbf{e}^{-\frac{\rho^2}{2cd}}.$$

2) Show that $\sup_{0\leqslant t\leqslant T}|\xi_t|$ has all exponential moments finite i.e. $\mathbb{E}[\exp\{\lambda\sup_{0\leqslant t\leqslant T}|\xi_t|\}]<\infty$ for every $\lambda>0$. Moreover, there exists $c^*>0$ such that

$$\mathbb{E}\left[\exp\{c\sup_{0 \le t \le T} |\xi_t|^2\}\right] < +\infty$$

for all $c < c^*$.

Hint. Use that for a positive random variable x with $g \in C^1(\mathbb{R}_+, \mathbb{R})$ we have $\mathbb{E}[g(x)] = g(0) + \int_0^\infty g'(s)P(x \ge s)ds$

3) Remove the assumption of boundedness for σ . Show that for every T>0, there exists a constant $c=c_T>0$ such that for R large enough

$$P\left(\sup_{0\leqslant t\leqslant T}|\xi_t|>R\right)\leqslant \frac{1}{R^{c\log R}}.$$

Hint. Write the stochastic differential of $Y_t = u(\xi_t)$ for $u(x) = \log(1 + |x|^2)$ and observe that $b^{\top}(\xi_t, t) \nabla u(\xi_t)$, $\sigma(\xi_t, t) \sigma^{\top}(\xi_t, t) : \nabla^2 u(\xi_t)$, $\sigma_{:,k}(\xi_t, t) \cdot \nabla u(\xi_t)$ $k = 1, \dots, m$ are all bounded functions.

Solution

1) Via the exponential martingale inequality we have

$$\left| P\left(\sup_{0 \le t \le T} \left| \int_0^t \sigma(\xi_s, s) dB_s \right| \ge \rho \right) \le 2de^{-c_0 \rho^2}$$

where $c_0 = \left(2Tdk\right)^{-1}$. If we define $A = \left\{\sup_{0\leqslant t\leqslant T}\left|\int_0^t \sigma(\xi_s,s)dB_s\right| < \rho\right\}$, then on A we have, for $t\leqslant T$,

$$|\xi_t| \leqslant |x| + M \int_0^t (1 + |\xi_s|) ds + \rho$$

i.e.

$$\xi_T^* := \sup_{0 \leqslant t \leqslant T} |\xi_t| \leqslant \left(|x| + MT + \rho\right) + M \int_0^T \xi_s^* ds$$

and by Gronwall's Lemma $\xi_T^* \leq (|x| + MT + \rho)e^{MT}$. Therefore, if $|x| \leq K$,

$$\mathbf{P}\bigg(\sup_{0\leqslant t\leqslant T}|\xi_t|>(K+MT+\rho)\mathbf{e}^{MT}\bigg)\leqslant\mathbf{P}\bigg(\sup_{0\leqslant t\leqslant T}\bigg|\int_0^t\sigma(\xi_s,s)dB_s\bigg|\geqslant\rho\bigg)\leqslant 2d\mathbf{e}^{-c_0\rho^2}$$

Setting $R = (K + MT + \rho)\mathrm{e}^{MT}$ we have $\rho = R\mathrm{e}^{-MT} - (|k| + MT)$ and therefore

$$\mathbf{P}\bigg(\sup_{0\leqslant t\leqslant T}|\xi_t|>R\bigg)\leqslant 2d\exp\Big(-c_0\big(R\mathrm{e}^{-MT}-(K+MT)\big)^2\Big)$$

from which we obtain that, for every constant $c = c_T$ strictly smaller than

$$c_0 e^{-2MT} = \frac{e^{-2MT}}{2Tmk}$$

the inequality (5.2) holds for R large enough.

2) Using the hint with $g(x) = e^{\lambda x}$ and the estimate from the previous point we have

$$\mathrm{E}\left[\mathrm{e}^{\lambda\left(\sup_{0\leqslant t\leqslant T}|\xi_t|\right)}\right] = 1 + \int_0^{+\infty} \lambda \mathrm{e}^{\lambda s} \mathrm{P}\left(\sup_{0\leqslant t\leqslant T}|\xi_t|\geqslant s\right) dt < +\infty, \quad \lambda\in\mathbb{R}.$$

If we take instead $g(x) = e^{\alpha x^2}$, then

$$\mathbb{E}\left[\mathrm{e}^{\alpha\left(\sup_{0\leqslant t\leqslant T}\left|\xi_{t}\right|^{2}\right)}\right]=1+\int_{0}^{+\infty}\alpha s\mathrm{e}^{\alpha s^{2}}\mathrm{P}\bigg(\sup_{0\leqslant t\leqslant T}\left|\xi_{t}\right|^{2}\geqslant s\bigg)dt<+\infty,\quad\alpha\in\mathbb{R}.$$

which is bounded for all $\alpha < C_T$.

3) If $u(x) = \log(1 + |x|^2)$, let us compute the derivatives:

$$\begin{split} u_{x_i}(x) &= \frac{2x_i}{1+|x|^2} \\ u_{x_ix_j}(x) &= \frac{2\delta_{ij}}{1+|x|^2} - \frac{4x_ix_j}{\left(1+|x|^2\right)^2} \end{split}$$

In particular, as $|x| \to +\infty$ the first-order derivatives go to 0 at least as $x \mapsto |x|^{-1}$ and the second-order derivatives at least as $x \mapsto |x|^{-2}$. By Ito's formula the process $Y_t = \log(1 + |\xi_t|^2)$ has stochastic differential

$$\begin{split} dY_t &= \left(\sum_{i=1}^m u_{x_i}(\xi_t) b_i(\xi_t, t) + \frac{1}{2} \sum_{i,j}^m u_{x_i x_j}(\xi_t) a_{ij}(\xi_t, t) \right) dt \\ &+ \sum_{i=1}^m \sum_{j=1}^d u_{x_i}(\xi_t) \sigma_{ij}(\xi_t, t) dB_j(t) \end{split}$$

where $a = \sigma \sigma^*$. As b and σ are assumed to satisfy the linear growth bound property, it is clear that all the terms $u_{x_i}b_i, u_{x_ix_j}a_{ij}, u_{x_i}\sigma_{ij}$ are bounded. We can therefore apply 1) which guarantees that there exists a constant c > 0 such that, for large ρ ,

$$P\left(\sup_{0 \leqslant t \leqslant T} \log\left(1 + \left|\xi_t\right|^2\right) \geqslant \log \rho\right) \leqslant e^{-c(\log \rho)^2}$$

i.e. $P(\xi_T^* \geqslant \sqrt{\rho - 1}) \leqslant e^{-c(\log \rho)^2}$. Letting $R = \sqrt{\rho - 1}$, i.e. $\rho = R^2 + 1$, the inequality becomes, for large R,

$$\mathbf{P}(\xi_T^* \geqslant R) \leqslant \mathbf{e}^{-c(\log(R^2+1))^2} \leqslant \mathbf{e}^{-c(\log R)^2} = \frac{1}{R^{c\log R}}.$$