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Exercise 1.

Let g: [0,7] — R be a continuous function and let b > 0 and X, € L?(£2). Compute the solution of the
following SDE for t € [0, T
dX(t) = —bX(¢)dt + g(t)dW (1),

Solution

We apply the variation of constants method. First, we find the solution of the homogeneous equation,
which is X (t) = P(t) X, and then we look for a particular solution Y (¢). We consider the integrating factor

Pl(t) = e~ —bds) —_ et

and considering a particular solution of the form

hen dY, =[P71(#)] X (t)dt + P~1(t)d X (¢)
= beP X (t)dt + P (—bX (t)dt + g(t)dW (1))
= ellg(t)dW (t).

Hence

¢
X(t) = Xpe™ —|—/ e t=5)g(s)dW (s).
0

Exercise 2.
Let A € R B € R™™ and solve the n-dimensional SDE for ¢ € [0, 7]

dX(t) = AX(t)dt + BAW (t), (2.1)

with initial condition X(0) = X, and where W is an m-dimensional Brownian motion.
Hint. Generalize the one-dimensional case presented in the previous exercises.

Solution

We generalize the one-dimensional solution as
t
X(t) = e X,y + / eAt=5) BAW ().
0
We now prove using the It6 formula that it is indeed a solution. We have

Y(t) = e AtX(t) = X, + / t e=As BAW (s),
0



hence the process (Y'(¢),0 <t < T') has the differential
dY (t) = e At BAW (1).
Let us now consider the function u: R x R” — R" defined as
u(t,x) = etta,

so that X (t) = u(t,Y (t)). We can apply the multidimensional It6 formula to each of the components of
u(t, Y (t)). The partial derivatives are given by

n

E Azk: 6 k)lxl’ iil,...,n,

=1

ij) L) = 17"'7”7

0y o, (u(t, x);) =0, i k=1,..,n.

Hence, we have

(AX () = d(u(t, Y (£); = Y Apl(e™)uY (D)dt + Y (1) ;5dY (2);
k=1 j=1

n
A (€)Y (),dt + Z(eAt)ij(eiAt)jkBkldW(wl
=1 S 1=

k
= (AeMte X (t)),dt + (eAte A BAW (1)),
= (AX(t));dt + (BAW (1)),

n

which proves that X(¢) is a solution.

Exercise 3.
For X, = (X} Xg)T € (L%(£2))?, solve the system of SDEs for ¢t € [0, 7]

AX, (1) = Xy(t)dt + dWy (1),

dX,(t) = X, (t)dt + dWy(t), (3.1)

with initial condition X (0) = X, and where W; and W, are two independent one-dimensional Brownian
motions.
Hint. Use Exercise 1 or consider the processes

Solution

We consider the previous exercise with n =m = 2 and A, B given by

)0

We have now to compute exp(At). This can be done by diagonalizing A on an orthonormal basis as

o) =200 )RR Y e



which yields through exp(At) = Uexp(At)U T

Otherwise, one can compute

Noticing that

we have

<1 [t > 1 0 2+
At __ X —_ .
=Yl @)+ X arm(en o)

j=0 ’ J
cosht 0
0 cosht
1 el et el—e
o\let—et et4+et)
Plugging into the solution of the general equation the value of exp(At), we obtain

<X1(t)) 1 <(et +e H X+ (et — et)X(%) N 1 E‘/(et*S + e dW; (s)
X,(t) (' —e)Xg + (" + e )XG) T 2\ [M(el* + 5 ) dWy(s) )

3 (3.3)
Alternatively, the processes Y; = X; + X5 and Y, = X; — X, satisfy

dYy(t) = Vidt + V2dW,(t),  Y1(0) = X,(0) + X,(0),
dYy(t) = —Yadt + V2dWy(t), ¥5(0) = X,(0) — X5(0),

where W, = (W, + W,)/V2 and Wy = (W, — Ws)/V/2. We have by Series 8 Ex. 3 (or 6)
t
Yl (t) = Yl (0) + / eti's\/i(if/i?l(s)7
0
t —~
Ya(t) = Y0 + [ e VAT ).
0

Computing X; = (Y; +Y5)/2 and X, = (Y; —Y5;)/2 one obtains the same result as (3.3).

Exercise 4.

We recall that for random vectors X € R¥, Y € R™ that are jointly Gaussian

X NX) ( Cx CXY))
=N , , 4.1
<Y> ( <,UY Cyx Cy (41)
the conditional distribution of X given Y'is also Gaussian with the following distribution

XY ~ N(px + CxyCy' (Y — py), Cx — CxyCy' Cy x) (4.2)

1) Let {B;}sc0,7) be a Brownian motion on (§2,F, P, ();50). What is the conditional distribution of B
given B; = 0? The Gaussian process with such a distribution is called a Browian bridge.



2)

3) Define the process W, as dW, = dB, — B;:f‘ dt. Show that W, is a Brownian motion with respect to
the filtration &, = o(B,, u<t)Uo(By)
Hint. To show that W, — W, is independent of F it is enough to show that E[(W, — W,)B,] = 0 for
all v < s and w = 1 since all variables are Gaussian (hence uncorrelation is equivalent to independence).
4) Consider now the SDE
d¢, = —1§_t tdt +dW,, (4.3)
o = 0 with W, as in the previous point. Solve explicitly this SDE. Show that {&, }c(o,1] is a Gaussian
process and has the distribution of a Brownian bridge. What is the relation between {ft}te[m] and the
process B, = B, — tB; of point 2) ?
Hint. Write the stochastic differential of Bt and replace dB; with dW,.
Solution
1) We apply formula (4.2) to X = (Btl, s Btm), Y = B;. We have Cy = 1 whereas, since Cov(Bti, Bl) =
ti A ]. = ti?
t
Cxy= :
tm
and
t
CxyCy'Cxy = (e ty)
tm
the matrix CX7YC{/1C’)T(7Y has ¢;t; as its (i, j)-th entry. As Cy is the matrix (¢; A tj)i 7 the conditional
law is Gaussian with covariance matrix C'y — CX7YC{/1C’X,Y: (tz- ANt — titj)i 7 ie.
ti(1—t) t(1—ty) ...t1(1—t,)
(1 —ty) ta(1—ty) .ito(l—1t,,)
C =
tl(l_tm) t2(1_tm) "‘tm(l_tm)
and mean (here E[X] =0,E[Y]=0)
ty
Cx yCy'Y = B (4.4)
tm
Let us denote {Bt}te[o,T] the conditional process. The previous calculation shows that all finite
dimensional distributions are Gaussian and X = (Btﬁ e Btm) = X|Y =0~ N(0,C) with C defined
in (1). Hence the process B is Gaussian with mean pg =0 and covariance Covy(s,t) = s At — st.
2) Let 0 < t; < -+ < t,,, < 1. Clearly, Bt is a Gaussian process (all finite dimensional distributions are

Consider the stochastic process Bt = B, —tB;. Show that Bt is a Gaussian process and has the
distribution of a Brownian bridge.

Gaussian). A straightforward calculation E[B,] = 0 and Covp(s,t) = E[(Bs—sB;)(B;—tB;)] = sAt—st,
which coincide with the mean and the covariance of a Brownian bridge.”



3) For the first property of the Brownian motion (independent increments), as the r.v.’s W,—W,, By, B, 1250 <

s form a Gaussian family, it suffices to show that W, — W, is orthogonal to B,,0 < v < s, and to Bl
We have

E[(W, — W.,)B,] = E[(B, — B,)B,] — /t wdu —t—s5— /t du =0

and, for v < s,
‘ E[(Bl B Bu)Bv]

T du=0

E[(W, — W,)B,] = E[(B, — B,)B,] /

S

For the second property (Gaussian increments) clearly {W,} is a Gaussian process so we just need to check
that it has the covariance of a Brownian motion. Let us prove that E[W,W,] = s, for 0 < s < ¢. This is
elementary, albeit laborious. If s < ¢ < 1, note that E[W,W,] = E[(W, — W,)W,] + E[W2]| = E[W?2],
thanks to the previous property. Hence we are reduced to the computation of

s B —B S S B _B B —B
E[W?] :E<B§>—2/ E[Bsi—u“]du+/ dv/ E[ 1 v D1 w | gu
0 - 0 o

1—w 1—u

:3—2/ 5 du—|—/ dv/ 1_U_U+U/\Udu
y 1—u b h (1—=v)(1—u)
—s—2I, + I,

With patience one can compute I, and find that it is equal to 21, which gives the result. The simplest
way to check that I, = 21; is to observe that the integrand in I, is a function of (u,v) that is symmetric

in u,v. Hence
12:/ dv/ 1—u— eru/\v _2// 1—u—v+u/\vdudv
b A (I—v)(1—u) hh<u (1—wu)

s s 1—u s —
:Q/dv/ —du:2/ Uy = 21
b | (1—v)(1—u) ), 1—wv !

Hence E[W, W] = s At. If s <t, the r.v. W, — W is centered Gaussian as (W}), is clearly a centered
Gaussian process, which together with the first property, completes the proof that Wis a (3; t)t—Brownian

motion.

Finally, we have
dB, = A,dt + dW,
with BB
Ay =—=—L
t 1—t
Hence, since A is adapted to (f t)t’ B is an Ito process with respect to the new Brownian motion W.

4) Let us follow the idea of the variation of constants applied to a general SDE. More precisely, we formally

consider a general SDE
xy = b(t)z, + o(t)dB,

Tog =T

(4.5)

as an ordinary differential equation where the noise is considered as a external force term. The solution
of the ordinary differential equation without noise

xy = b(t)x,

Tog =T



is x, = ez, where A(t f b(s)ds. Let us look for a solution of the form z, = eA)C(t) for (4.5).
One sees easily that C must be the solution of

AIO(t) = o(t)dB,
i.e.

C(t) = /t e )5 (s5)dB,
0

The solution is therefore .
&= Mg + 1) [ e No(s)a,
0

As the stochastic integral of a deterministic function is, as a function of the integration endpoint, a

Gaussian process, ¢ is Gaussian. Obviously E(¢,) = eA®)¢,. Let us compute its covariance function. Let
s <t and let

Then,
COV(£t7£S) E YI-SY—:)

= E{e/‘

~+
(‘D
Q
VS
[¢)
5N
=
S—
w
m\
B
=
Q
—
=4
-~
QU
oy
S~
—_

[
[/0 e AWg(y u(/oseA<U)U(U)dBv>*]eA(8)*

In particular, if m = 1 the covariance is

eA(t)eA(s)/ e 2400 52 () du
0

Therefore, for (4.3) we have

i st = log(1 —t)

Therefore ¢A*) = 1 — ¢ and the solution of (9.47) is

t
b=(-tg+1-9 [ {2
0

Hence E[§,] = (1 — t)&,. £ is a Gaussian process with covariance function

K(t,s):(1—t)(1_s)/osﬁdu:(1—t)(1— >(1+—1> —s(1—1)

for s < t. If z = 0, then E(§) = 0 for every ¢t and the process has the same mean and covariance
functions as a Brownian bridge.

Finally, one has

dB, = dB, — B,
=dW, + th—Bl
_ 4.6
=B By aw, (+6)
1—¢
_ t
1—t

Thus, B solves (4.3).



Exercise 5.

Consider the SDE
d&, = b(&, t)dt + o(&, t)dB,

0=

(5.1)
with the standard assumptions on b : R% x R L= R? o : R? x R, — R¥™ (global Lipschitz and linear growth
bound with constant M).

1) Suppose that o is bounded, i.e. 3k > 0 such that |o(z,t)||r < k, for all z,t. Show that for any T' > 0
there exists ¢y > 0 such that for R large enough

P(sup |&] > R) < e R, (5.2)
0<t<T

i.e. the process has Gaussian tails.

Hint. use L' type bounds on |¢,| on the set A = { sup U (&,5)dB
0

<t<T
nential martingale inequality to bound P(A): let G € M?(|0, T},Rdxm) be s.t.

p} and the following expo-

T
/ TG ,Glods < c|0)?
0

for all # € RY, and I, = fot G,dB,. Then

2
P( sup |I,| > p) < e 2ea.

0<t<T

2) Show that sup || has all exponential moments finite i.e. E[exp{A sup [€]}] < oo for every A > 0.
o<t<T
Moreover, there exists ¢* > 0 such that

<<

E[exp{c sup |§t|2}] < +o0
0<t<T

for all ¢ < c*.

Hint. Use that for a positive random variable z with ¢ € C'(R,,R) we have E[g(x)] = ¢(0) +
fooo g (s)P(x > s)ds

3) Remove the assumption of boundedness for o. Show that for every T > 0, there exists a constant
¢ = ¢p > 0 such that for R large enough

1
P(bup §t>R> W

o<t<T

Hint. Write the stochastic differential of Y, = wu(&) for u(x ) log(1 + |z|?) and observe that
b (&, )V (&), o(&,t)o ! (&) : VEu(&y), 0.1 (&,t) - Vu(€,) k= 1,...,m are all bounded functions.

Solution

1) Via the exponential martingale inequality we have

t
P( sup / (&, s)dB
0<t<T|Jg

where ¢, = (2Tdk)”". If we define A = {supo<t<TU (&, 8)

<7,

t
&l < |x|+M/ (1+ I Dds + p
0



i.e.

T
1= sup [6] < (ol + MT+p)+ M [ €ds
0

0<t<T

and by Gronwall’s Lemma & < (|z| + MT + p)eMT. Therefore, if |z| < K

/0 (6, )

Setting R = (K + MT + p)eMT we have p = Re M7 — (|k| + MT) and therefore

P( sup |&| > (K—i—MT—i—p)eMT) < P( sup

o<t<T 0<t<T]

B,| > p) < 2deCor”

P< sup |&| > R) < 2dexp<—cO(Re_MT— (K+MT))2)

o<t<T

from which we obtain that, for every constant ¢ = ¢ strictly smaller than

the inequality (5.2) holds for R large enough.

2) Using the hint with g(x) = e*® and the estimate from the previous point we have

A ¢, +o00
E le (o?tlgT‘ f)] =1 +/ /\e’\SP< sup || > s> dt < +o00, AeR.
0

o<t<T

If we take instead g(z) = €***, then
2
B {ea (021:£T|§t| )

which is bounded for all « < Cp .

+o0
=1 +/ ase"‘s2P( sup |&]% > s) dt < 400, «a€R.
0

0<t<T

3) If u(z) = log(1 + |x|?), let us compute the derivatives:

u rT)=——FT7%

TP
wLwJ(I) = 1 - 2 - 2
2P (14 )22)

In particular, as |z| — +oo the first-order derivatives go to 0 at least as x — |z|~! and the second-order
derivatives at least as = + |z|72. By Ito’s formula the process Y, = log<1 + |§t|2> has stochastic

differential
dy, = (Zu (§)bi(&st) QZsz (&)ag; (& ))
£33 (€ 1B 1)

i=1 j=1
where a = 0o*. As b and o are assumed to satisfy the linear growth bound property, it is clear that all
the terms wu, b;, Uy, Qi Uy O ATE bounded. We can therefore apply 1) which guarantees that there
exists a constant ¢ > 0 such that, for large p,

P( sup log(1+ l¢,[°) > 1ogp) < celioss)’
0<t<T

ie. P(f} Z\/p— 1) < e clogn)® Letting R = \/p— 1, i.e. p= R?+ 1, the inequality becomes, for
large R,
1

—c(log(R?+1 —c(logR)? _
R) < ecllos( )* < eellog R)? = =i

P(&r

WV
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