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Exercise 1.
Let 𝑔∶ [0, 𝑇 ] → R be a continuous function and let 𝑏 > 0 and 𝑋0 ∈ L2(𝛺). Compute the solution of the

following SDE for 𝑡 ∈ [0, 𝑇 ]
d𝑋(𝑡) = −𝑏𝑋(𝑡)d𝑡 + 𝑔(𝑡)d𝑊(𝑡),
𝑋(0) = 𝑋0.

Solution
We apply the variation of constants method. First, we find the solution of the homogeneous equation,

which is 𝑋(𝑡) = 𝑃(𝑡)𝑋0 and then we look for a particular solution 𝑌 (𝑡). We consider the integrating factor

𝑃 −1(𝑡) = 𝑒−(∫𝑡
0 −𝑏d𝑠) = 𝑒𝑏𝑡

and considering a particular solution of the form

𝑌 (𝑡) = 𝑃 −1(𝑡)𝑋(𝑡).

Then
d𝑌𝑡 =[𝑃 −1(𝑡)]′𝑋(𝑡)d𝑡 + 𝑃 −1(𝑡)d𝑋(𝑡)

= 𝑏𝑒𝑏𝑡𝑋(𝑡)d𝑡 + 𝑒𝑏𝑡(−𝑏𝑋(𝑡)d𝑡 + 𝑔(𝑡)d𝑊(𝑡))
= 𝑒𝑏𝑡𝑔(𝑡)d𝑊(𝑡).

Hence
𝑋(𝑡) = 𝑋0𝑒−𝑏𝑡 + ∫

𝑡

0
𝑒−𝑏(𝑡−𝑠)𝑔(𝑠)d𝑊(𝑠).

Exercise 2.
Let 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚 and solve the 𝑛-dimensional SDE for 𝑡 ∈ [0, 𝑇 ]

d𝑋(𝑡) = 𝐴𝑋(𝑡)d𝑡 + 𝐵d𝑊(𝑡), (2.1)

with initial condition 𝑋(0) = 𝑋0 and where 𝑊 is an 𝑚-dimensional Brownian motion.
Hint. Generalize the one-dimensional case presented in the previous exercises.

Solution
We generalize the one-dimensional solution as

𝑋(𝑡) = 𝑒𝐴𝑡𝑋0 + ∫
𝑡

0
𝑒𝐴(𝑡−𝑠)𝐵d𝑊(𝑠).

We now prove using the Itô formula that it is indeed a solution. We have

𝑌 (𝑡) = 𝑒−𝐴𝑡𝑋(𝑡) = 𝑋0 + ∫
𝑡

0
𝑒−𝐴𝑠𝐵d𝑊(𝑠),
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hence the process (𝑌 (𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ) has the differential

d𝑌 (𝑡) = 𝑒−𝐴𝑡𝐵d𝑊(𝑡).

Let us now consider the function 𝑢∶ R × R𝑛 → R𝑛 defined as

𝑢(𝑡, 𝑥) = 𝑒𝐴𝑡𝑥,

so that 𝑋(𝑡) = 𝑢(𝑡, 𝑌 (𝑡)). We can apply the multidimensional Itô formula to each of the components of
𝑢(𝑡, 𝑌 (𝑡)). The partial derivatives are given by

∂𝑡(𝑢(𝑡, 𝑥)𝑖) =
𝑛

∑
𝑘,𝑙=1

𝐴𝑖𝑘(𝑒𝐴𝑡)𝑘𝑙𝑥𝑙, 𝑖 = 1, … , 𝑛,

∂𝑥𝑗
(𝑢(𝑡, 𝑥)𝑖) = (𝑒𝐴𝑡)𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛,

∂𝑥𝑗𝑥𝑘
(𝑢(𝑡, 𝑥)𝑖) = 0, 𝑖, 𝑗, 𝑘 = 1, … , 𝑛.

Hence, we have

(d𝑋(𝑡))𝑖 = d(𝑢(𝑡, 𝑌 (𝑡)))𝑖 =
𝑛

∑
𝑘,𝑙=1

𝐴𝑖𝑘(𝑒𝐴𝑡)𝑘𝑙𝑌 (𝑡)𝑙d𝑡 +
𝑛

∑
𝑗=1

(𝑒𝐴𝑡)𝑖𝑗d𝑌 (𝑡)𝑗

=
𝑛

∑
𝑘,𝑙=1

𝐴𝑖𝑘(𝑒𝐴𝑡)𝑘𝑙𝑌 (𝑡)𝑙d𝑡 +
𝑛

∑
𝑗,𝑘=1

𝑚

∑
𝑙=1

(𝑒𝐴𝑡)𝑖𝑗(𝑒−𝐴𝑡)𝑗𝑘𝐵𝑘𝑙d𝑊(𝑡)𝑙

= (𝐴𝑒𝐴𝑡𝑒−𝐴𝑡𝑋(𝑡))𝑖d𝑡 + (𝑒𝐴𝑡𝑒−𝐴𝑡𝐵d𝑊(𝑡))𝑖

= (𝐴𝑋(𝑡))𝑖d𝑡 + (𝐵d𝑊(𝑡))𝑖,

which proves that 𝑋(𝑡) is a solution.

Exercise 3.
For 𝑋0 = (𝑋1

0 𝑋2
0)⊤ ∈ (L2(𝛺))2, solve the system of SDEs for 𝑡 ∈ [0, 𝑇 ]

d𝑋1(𝑡) = 𝑋2(𝑡)d𝑡 + d𝑊1(𝑡),
d𝑋2(𝑡) = 𝑋1(𝑡)d𝑡 + d𝑊2(𝑡),

(3.1)

with initial condition 𝑋(0) = 𝑋0 and where 𝑊1 and 𝑊2 are two independent one-dimensional Brownian
motions.
Hint. Use Exercise 1 or consider the processes

𝑌1(𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡),
𝑌2(𝑡) = 𝑋1(𝑡) − 𝑋2(𝑡).

(3.2)

Solution

We consider the previous exercise with 𝑛 = 𝑚 = 2 and 𝐴, 𝐵 given by

𝐴 = (0 1
1 0), 𝐵 = (1 0

0 1).

We have now to compute exp(𝐴𝑡). This can be done by diagonalizing 𝐴 on an orthonormal basis as

𝐴 = (0 1
1 0) =

√
2

2 (−1 1
1 1)(−1 0

0 1)
√

2
2 (−1 1

1 1)
⊤

= 𝑈𝛬𝑈⊤,
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which yields through exp(𝐴𝑡) = 𝑈 exp(𝛬𝑡)𝑈⊤

𝑒𝐴𝑡 = 1
2(𝑒𝑡 + 𝑒−𝑡 𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 − 𝑒−𝑡 𝑒𝑡 + 𝑒−𝑡).

Otherwise, one can compute

exp(𝐴𝑡) =
∞

∑
𝑗=0

(𝐴𝑡)𝑗

𝑗! .

Noticing that

(𝐴𝑡)𝑗 = 𝑡𝑗(1 0
0 1), if 𝑗 even,

(𝐴𝑡)𝑗 = 𝑡𝑗(0 1
1 0), if 𝑗 odd,

we have
𝑒𝐴𝑡 =

∞

∑
𝑗=0

1
(2𝑗)!(

𝑡2𝑗 0
0 𝑡2𝑗) +

∞

∑
𝑗=0

1
(2𝑗 + 1)!(

0 𝑡2𝑗+1

𝑡2𝑗+1 0 )

= (cosh 𝑡 0
0 cosh 𝑡) + ( 0 sinh 𝑡

sinh 𝑡 0 )

= 1
2(𝑒𝑡 + 𝑒−𝑡 𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 − 𝑒−𝑡 𝑒𝑡 + 𝑒−𝑡).

Plugging into the solution of the general equation the value of exp(𝐴𝑡), we obtain

(𝑋1(𝑡)
𝑋2(𝑡)) = 1

2((𝑒𝑡 + 𝑒−𝑡)𝑋1
0 + (𝑒𝑡 − 𝑒−𝑡)𝑋2

0
(𝑒𝑡 − 𝑒−𝑡)𝑋1

0 + (𝑒𝑡 + 𝑒−𝑡)𝑋2
0
) + 1

2(
∫𝑡
0 (𝑒𝑡−𝑠 + 𝑒𝑠−𝑡)d𝑊1(𝑠)

∫𝑡
0 (𝑒𝑡−𝑠 + 𝑒𝑠−𝑡)d𝑊2(𝑠)

). (3.3)

Alternatively, the processes 𝑌1 = 𝑋1 + 𝑋2 and 𝑌2 = 𝑋1 − 𝑋2 satisfy

d𝑌1(𝑡) = 𝑌1d𝑡 +
√

2d𝑊1(𝑡), 𝑌1(0) = 𝑋1(0) + 𝑋2(0),

d𝑌2(𝑡) = −𝑌2d𝑡 +
√

2d𝑊2(𝑡), 𝑌2(0) = 𝑋1(0) − 𝑋2(0).

where 𝑊1 = (𝑊1 + 𝑊2)/
√

2 and 𝑊2 = (𝑊1 − 𝑊2)/
√

2. We have by Series 8 Ex. 3 (or 6)

𝑌1(𝑡) = 𝑌1(0) + ∫
𝑡

0
𝑒𝑡−𝑠

√
2d𝑊1(𝑠),

𝑌2(𝑡) = 𝑌2(0) + ∫
𝑡

0
𝑒−(𝑡−𝑠)

√
2d𝑊2(𝑡).

Computing 𝑋1 = (𝑌1 + 𝑌2)/2 and 𝑋2 = (𝑌1 − 𝑌2)/2 one obtains the same result as (3.3).

Exercise 4.
We recall that for random vectors 𝑋 ∈ R𝑘, 𝑌 ∈ R𝑚 that are jointly Gaussian

(𝑋
𝑌) = 𝒩((𝜇𝑋

𝜇𝑌
), ( 𝐶𝑋 𝐶𝑋𝑌

𝐶𝑌 𝑋 𝐶𝑌
)), (4.1)

the conditional distribution of 𝑋 given 𝑌 is also Gaussian with the following distribution

𝑋|𝑌 ∼ 𝒩(𝜇𝑋 + 𝐶𝑋𝑌𝐶−1
𝑌 (𝑌 − 𝜇𝑌), 𝐶𝑋 − 𝐶𝑋𝑌𝐶−1

𝑌 𝐶𝑌 𝑋) (4.2)

1) Let {𝐵𝑡}𝑡∈[0,𝑇 ] be a Brownian motion on (𝛺, ℱ, 𝑃 , (ℱ)𝑡⩾0). What is the conditional distribution of 𝐵
given 𝐵1 = 0? The Gaussian process with such a distribution is called a Browian bridge.
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2) Consider the stochastic process 𝐵̂𝑡 = 𝐵𝑡 − 𝑡𝐵1. Show that 𝐵̂𝑡 is a Gaussian process and has the
distribution of a Brownian bridge.

3) Define the process 𝑊𝑡 as 𝑑𝑊𝑡 = 𝑑𝐵𝑡 − 𝐵1−𝐵𝑡

1−𝑡
𝑑𝑡. Show that 𝑊𝑡 is a Brownian motion with respect to

the filtration ̃ℱ𝑡 = 𝜎(𝐵𝑢, 𝑢 ⩽ 𝑡) ∪ 𝜎(𝐵1)

Hint. To show that 𝑊𝑡 − 𝑊𝑠 is independent of ̃ℱ𝑠 it is enough to show that E[(𝑊𝑡 − 𝑊𝑠)𝐵𝑢] = 0 for
all 𝑢 ⩽ 𝑠 and 𝑢 = 1 since all variables are Gaussian (hence uncorrelation is equivalent to independence).

4) Consider now the SDE
𝑑𝜉𝑡 = − 𝜉𝑡

1 − 𝑡𝑑𝑡 + 𝑑𝑊𝑡, (4.3)

𝜉0 = 0 with 𝑊𝑡 as in the previous point. Solve explicitly this SDE. Show that {𝜉𝑡}𝑡∈[0,1] is a Gaussian
process and has the distribution of a Brownian bridge. What is the relation between {𝜉𝑡}𝑡∈[0,1] and the
process 𝐵̂𝑡 = 𝐵𝑡 − 𝑡𝐵1 of point 2) ?

Hint. Write the stochastic differential of 𝐵̂𝑡 and replace 𝑑𝐵𝑡 with 𝑑𝑊𝑡.

Solution

1) We apply formula (4.2) to 𝑋 = (𝐵𝑡1
, … , 𝐵𝑡𝑚

), 𝑌 = 𝐵1. We have 𝐶𝑌 = 1 whereas, since Cov(𝐵𝑡𝑖
, 𝐵1) =

𝑡𝑖 ∧ 1 = 𝑡𝑖,

𝐶𝑋,𝑌 = ⎛⎜
⎝

𝑡1
⋮

𝑡𝑚

⎞⎟
⎠

and

𝐶𝑋,𝑌𝐶−1
𝑌 𝐶𝑇

𝑋,𝑌 = ⎛⎜
⎝

𝑡1
⋮

𝑡𝑚

⎞⎟
⎠

(𝑡1 … 𝑡𝑚)

the matrix 𝐶𝑋,𝑌𝐶−1
𝑌 𝐶𝑇

𝑋,𝑌 has 𝑡𝑖𝑡𝑗 as its (𝑖, 𝑗)-th entry. As 𝐶𝑋 is the matrix (𝑡𝑖 ∧ 𝑡𝑗)𝑖,𝑗
, the conditional

law is Gaussian with covariance matrix 𝐶𝑋 − 𝐶𝑋,𝑌𝐶−1
𝑌 𝐶𝑋,𝑌 = (𝑡𝑖 ∧ 𝑡𝑗 − 𝑡𝑖𝑡𝑗)𝑖,𝑗

, i.e.

𝐶 ∶=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑡1(1 − 𝑡1) 𝑡1(1 − 𝑡2) … 𝑡1(1 − 𝑡𝑚)
𝑡1(1 − 𝑡2) 𝑡2(1 − 𝑡2) … 𝑡2(1 − 𝑡𝑚)

⋱

𝑡1(1 − 𝑡𝑚) 𝑡2(1 − 𝑡𝑚) … 𝑡𝑚(1 − 𝑡𝑚)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

and mean (here E[𝑋] = 0, E[𝑌 ] = 0 )

𝐶𝑋,𝑌𝐶−1
𝑌 𝑌 = ⎛⎜

⎝

𝑡1
⋮

𝑡𝑚

⎞⎟
⎠

𝐵1 (4.4)

Let us denote {𝐵̂𝑡}𝑡∈[0,𝑇 ] the conditional process. The previous calculation shows that all finite
dimensional distributions are Gaussian and 𝑋̂ = (𝐵̂𝑡1

, … , 𝐵̂𝑡𝑚
) = 𝑋|𝑌 = 0 ∼ 𝒩(0, 𝐶) with 𝐶 defined

in (1). Hence the process 𝐵̂ is Gaussian with mean 𝜇𝐵̂ = 0 and covariance Cov𝐵̂(𝑠, 𝑡) = 𝑠 ∧ 𝑡 − 𝑠𝑡.

2) Let 0 ⩽ 𝑡1 < ⋯ < 𝑡𝑚 ⩽ 1. Clearly, 𝐵̂𝑡 is a Gaussian process (all finite dimensional distributions are
Gaussian). A straightforward calculation E[𝐵̂𝑡] = 0 and Cov𝐵̂(𝑠, 𝑡) = E[(𝐵𝑠−𝑠𝐵1)(𝐵𝑡−𝑡𝐵1)] = 𝑠∧𝑡−𝑠𝑡,
which coincide with the mean and the covariance of a Brownian bridge.¨
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3) For the first property of the Brownian motion (independent increments), as the r.v.’s 𝑊𝑡−𝑊𝑠, 𝐵1, 𝐵𝑣, 𝑧
∼𝑣

, 𝑣 ⩽
𝑠 form a Gaussian family, it suffices to show that 𝑊𝑡 − 𝑊𝑠 is orthogonal to 𝐵𝑣, 0 ⩽ 𝑣 ⩽ 𝑠, and to 𝐵1.
We have

E[(𝑊𝑡 − 𝑊𝑠)𝐵1] = E[(𝐵𝑡 − 𝐵𝑠)𝐵1] − ∫
𝑡

𝑠

E[(𝐵1 − 𝐵𝑢)𝐵1]
1 − 𝑢 𝑑𝑢 = 𝑡 − 𝑠 − ∫

𝑡

𝑠
𝑑𝑢 = 0

and, for 𝑣 ⩽ 𝑠,

E[(𝑊𝑡 − 𝑊𝑠)𝐵𝑣] = E[(𝐵𝑡 − 𝐵𝑠)𝐵𝑣] − ∫
𝑡

𝑠

E[(𝐵1 − 𝐵𝑢)𝐵𝑣]
1 − 𝑢 𝑑𝑢 = 0

For the second property (Gaussian increments) clearly {𝑊𝑡} is a Gaussian process so we just need to check
that it has the covariance of a Brownian motion. Let us prove that E[𝑊𝑡𝑊𝑠] = 𝑠, for 0 ⩽ 𝑠 ⩽ 𝑡. This is
elementary, albeit laborious. If 𝑠 < 𝑡 ⩽ 1, note that E[𝑊𝑡𝑊𝑠] = E[(𝑊𝑡 − 𝑊𝑠)𝑊𝑠] + E[𝑊 2

𝑠 ] = E[𝑊 2
𝑠 ],

thanks to the previous property. Hence we are reduced to the computation of

E[𝑊 2
𝑠 ] = E(𝐵2

𝑠) − 2 ∫
𝑠

0
E[𝐵𝑠

𝐵1 − 𝐵𝑢
1 − 𝑢 ]𝑑𝑢 + ∫

𝑠

0
𝑑𝑣 ∫

𝑠

0
E[𝐵1 − 𝐵𝑣

1 − 𝑣
𝐵1 − 𝐵𝑢

1 − 𝑢 ]𝑑𝑢

= 𝑠 − 2 ∫
𝑠

0

𝑠 − 𝑢
1 − 𝑢𝑑𝑢 + ∫

𝑠

0
𝑑𝑣 ∫

𝑠

0

1 − 𝑢 − 𝑣 + 𝑢 ∧ 𝑣
(1 − 𝑣)(1 − 𝑢) 𝑑𝑢

= 𝑠 − 2𝐼1 + 𝐼2

With patience one can compute 𝐼2 and find that it is equal to 2𝐼1, which gives the result. The simplest
way to check that 𝐼2 = 2𝐼1 is to observe that the integrand in 𝐼2 is a function of (𝑢, 𝑣) that is symmetric
in 𝑢, 𝑣. Hence

𝐼2 = ∫
𝑠

0
𝑑𝑣 ∫

𝑠

0

1 − 𝑢 − 𝑣 + 𝑢 ∧ 𝑣
(1 − 𝑣)(1 − 𝑢) 𝑑𝑢 = 2 ∬

𝑣⩽𝑢

1 − 𝑢 − 𝑣 + 𝑢 ∧ 𝑣
(1 − 𝑣)(1 − 𝑢) 𝑑𝑢𝑑𝑣

= 2 ∫
𝑠

0
𝑑𝑣 ∫

𝑠

𝑣

1 − 𝑢
(1 − 𝑣)(1 − 𝑢)𝑑𝑢 = 2 ∫

𝑠

0

𝑠 − 𝑣
1 − 𝑣𝑑𝑣 = 2𝐼1

Hence E[𝑊𝑡𝑊𝑠] = 𝑠 ∧ 𝑡. If 𝑠 ⩽ 𝑡, the r.v. 𝑊𝑡 − 𝑊𝑠 is centered Gaussian as (𝑊𝑡)𝑡 is clearly a centered
Gaussian process, which together with the first property, completes the proof that 𝑊 is a ( ̂ℱ𝑡)𝑡

-Brownian
motion.
Finally, we have

𝑑𝐵𝑡 = 𝐴𝑡𝑑𝑡 + 𝑑𝑊𝑡

with
𝐴𝑡 = 𝐵1 − 𝐵𝑡

1 − 𝑡 .

Hence, since 𝐴 is adapted to ( ̂ℱ𝑡)𝑡
, 𝐵 is an Ito process with respect to the new Brownian motion 𝑊.

4) Let us follow the idea of the variation of constants applied to a general SDE. More precisely, we formally
consider a general SDE

𝑥′
𝑡 = 𝑏(𝑡)𝑥𝑡 + 𝜎(𝑡)𝑑𝐵𝑡

𝑥0 = 𝑥
(4.5)

as an ordinary differential equation where the noise is considered as a external force term. The solution
of the ordinary differential equation without noise

𝑥′
𝑡 = 𝑏(𝑡)𝑥𝑡

𝑥0 = 𝑥
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is 𝑥𝑡 = e𝛬(𝑡)𝑥, where 𝛬(𝑡) = ∫𝑡
0 𝑏(𝑠)𝑑𝑠. Let us look for a solution of the form 𝑥𝑡 = e𝛬(𝑡)𝐶(𝑡) for (4.5).

One sees easily that 𝐶 must be the solution of

e𝛬(𝑡)𝑑𝐶(𝑡) = 𝜎(𝑡)𝑑𝐵𝑡

i.e.
𝐶(𝑡) = ∫

𝑡

0
e−𝛬(𝑠)𝜎(𝑠)𝑑𝐵𝑠

The solution is therefore
𝜉𝑡 = e𝛬(𝑡)𝜉0 + e𝛬(𝑡) ∫

𝑡

0
e−𝛬(𝑠)𝜎(𝑠)𝑑𝑊𝑠

As the stochastic integral of a deterministic function is, as a function of the integration endpoint, a
Gaussian process, 𝜉 is Gaussian. Obviously E(𝜉𝑡) = e𝛬(𝑡)𝜉0. Let us compute its covariance function. Let
𝑠 ⩽ 𝑡 and let

𝑌𝑡 = e𝛬(𝑡) ∫
𝑡

0
e−𝛬(𝑠)𝜎(𝑠)𝑑𝐵𝑠

Then,
Cov(𝜉𝑡, 𝜉𝑠) = E(𝑌𝑡𝑌 ∗

𝑠 )

= E[e𝛬(𝑡) ∫
𝑡

0
e−𝛬(𝑢)𝜎(𝑢)𝑑𝐵𝑢(e𝛬(𝑠) ∫

𝑠

0
e−𝛬(𝑣)𝜎(𝑣)𝑑𝐵𝑣)

∗

]

= e𝛬(𝑡)E[∫
𝑡

0
e−𝛬(𝑢)𝜎(𝑢)𝑑𝐵𝑢(∫

𝑠

0
e−𝛬(𝑣)𝜎(𝑣)𝑑𝐵𝑣)

∗

]e𝛬(𝑠)∗

= e𝛬(𝑡) ∫
𝑠

0
e−𝛬(𝑢)𝜎(𝑢)𝜎∗(𝑢)e−𝛬(𝑢)∗𝑑𝑢e𝛬(𝑠)∗

In particular, if 𝑚 = 1 the covariance is

e𝛬(𝑡)e𝛬(𝑠) ∫
𝑠

0
e−2𝛬(𝑢)𝜎2(𝑢)𝑑𝑢

Therefore, for (4.3) we have

𝛬(𝑡) = ∫
𝑡

0
− 1

1 − 𝑠𝑑𝑠 = log(1 − 𝑡)

Therefore e𝛬(𝑡) = 1 − 𝑡 and the solution of (9.47) is

𝜉𝑡 = (1 − 𝑡)𝜉0 + (1 − 𝑡) ∫
𝑡

0

𝑑𝑊𝑠
1 − 𝑠

Hence E[𝜉𝑡] = (1 − 𝑡)𝜉0. 𝜉 is a Gaussian process with covariance function

𝐾(𝑡, 𝑠) = (1 − 𝑡)(1 − 𝑠) ∫
𝑠

0

1
(1 − 𝑢)2 𝑑𝑢 = (1 − 𝑡)(1 − 𝑠)( 1

1 − 𝑠 − 1) = 𝑠(1 − 𝑡)

for 𝑠 ⩽ 𝑡. If 𝑥 = 0, then E(𝜉𝑡) = 0 for every 𝑡 and the process has the same mean and covariance
functions as a Brownian bridge.
Finally, one has

𝑑𝐵̂𝑡 = 𝑑𝐵𝑡 − 𝐵1

= 𝑑𝑊𝑡 + 𝐵1 − 𝐵𝑡
1 − 𝑡 𝑑𝑡 − 𝐵1

= 𝑡𝐵1 − 𝐵𝑡
1 − 𝑡 𝑑𝑡 + 𝑑𝑊𝑡

= − 𝐵̂𝑡
1 − 𝑡𝑑𝑡 + 𝑑𝑊𝑡

(4.6)

Thus, 𝐵̂ solves (4.3).
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Exercise 5.
Consider the SDE

𝑑𝜉𝑡 = 𝑏(𝜉𝑡, 𝑡)𝑑𝑡 + 𝜎(𝜉𝑡, 𝑡)𝑑𝐵𝑡

𝜉0 = 𝑥
(5.1)

with the standard assumptions on 𝑏 ∶ R𝑑 ×R+ → R𝑑, 𝜎 ∶ R𝑑 ×R+ → R𝑑×𝑚 (global Lipschitz and linear growth
bound with constant 𝑀).

1) Suppose that 𝜎 is bounded, i.e. ∃𝑘 > 0 such that ‖𝜎(𝑥, 𝑡)‖𝐹 ⩽ 𝑘, for all 𝑥, 𝑡. Show that for any 𝑇 > 0
there exists 𝑐𝑇 > 0 such that for 𝑅 large enough

𝑃( sup
0⩽𝑡⩽𝑇

|𝜉𝑡| > 𝑅) ⩽ 𝑒−𝑐𝑇𝑅2, (5.2)

i.e. the process has Gaussian tails.

Hint. use 𝐿1 type bounds on |𝜉𝑡| on the set 𝐴 = { sup
0⩽𝑡⩽𝑇

∣∫𝑡
0 𝜎(𝜉𝑠, 𝑠)𝑑𝐵𝑠∣ ⩾ 𝜌} and the following expo-

nential martingale inequality to bound 𝑃(𝐴): let 𝐺 ∈ 𝑀2([0, 𝑇 ],R𝑑×𝑚) be s.t.

∫
𝑇

0
𝜃⊤𝐺𝑠𝐺⊤

𝑠 𝜃𝑑𝑠 ⩽ 𝑐|𝜃|2

for all 𝜃 ∈ R𝑑, and 𝐼𝑡 = ∫𝑡
0 𝐺𝑠𝑑𝐵𝑠. Then

P( sup
0⩽𝑡⩽𝑇

|𝐼𝑡| ⩾ 𝜌) ⩽ 2𝑑e− 𝜌2

2𝑐𝑑 .

2) Show that sup
0⩽𝑡⩽𝑇

|𝜉𝑡| has all exponential moments finite i.e. E[exp{𝜆 sup
0⩽𝑡⩽𝑇

|𝜉𝑡|}] < ∞ for every 𝜆 > 0.

Moreover, there exists 𝑐∗ > 0 such that

E[exp{𝑐 sup
0⩽𝑡⩽𝑇

|𝜉𝑡|2}] < +∞

for all 𝑐 < 𝑐∗.
Hint. Use that for a positive random variable 𝑥 with 𝑔 ∈ 𝐶1(R+,R) we have E[𝑔(𝑥)] = 𝑔(0) +
∫∞
0 𝑔′(𝑠)𝑃 (𝑥 ⩾ 𝑠)𝑑𝑠

3) Remove the assumption of boundedness for 𝜎. Show that for every 𝑇 > 0, there exists a constant
𝑐 = 𝑐𝑇 > 0 such that for 𝑅 large enough

P( sup
0⩽𝑡⩽𝑇

|𝜉𝑡| > 𝑅) ⩽ 1
𝑅𝑐 log 𝑅 .

Hint. Write the stochastic differential of 𝑌𝑡 = 𝑢(𝜉𝑡) for 𝑢(𝑥) = log(1 + |𝑥|2) and observe that
𝑏⊤(𝜉𝑡, 𝑡)𝛻𝑢(𝜉𝑡), 𝜎(𝜉𝑡, 𝑡)𝜎⊤(𝜉𝑡, 𝑡) ∶ 𝛻2𝑢(𝜉𝑡), 𝜎∶,𝑘(𝜉𝑡, 𝑡) ⋅ 𝛻𝑢(𝜉𝑡) 𝑘 = 1, … , 𝑚 are all bounded functions.

Solution

1) Via the exponential martingale inequality we have

P( sup
0⩽𝑡⩽𝑇

∣∫
𝑡

0
𝜎(𝜉𝑠, 𝑠)𝑑𝐵𝑠∣ ⩾ 𝜌) ⩽ 2𝑑e−𝑐0𝜌2

where 𝑐0 = (2𝑇 𝑑𝑘)−1. If we define 𝐴 = {sup0⩽𝑡⩽𝑇∣∫𝑡
0 𝜎(𝜉𝑠, 𝑠)𝑑𝐵𝑠∣ < 𝜌}, then on 𝐴 we have, for 𝑡 ⩽ 𝑇,

|𝜉𝑡| ⩽ |𝑥| + 𝑀 ∫
𝑡

0
(1 + |𝜉𝑠|)𝑑𝑠 + 𝜌
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i.e.

𝜉∗
𝑇 ∶= sup

0⩽𝑡⩽𝑇
|𝜉𝑡| ⩽ (|𝑥| + 𝑀𝑇 + 𝜌) + 𝑀 ∫

𝑇

0
𝜉∗

𝑠𝑑𝑠

and by Gronwall’s Lemma 𝜉∗
𝑇 ⩽ (|𝑥| + 𝑀𝑇 + 𝜌)e𝑀𝑇. Therefore, if |𝑥| ⩽ 𝐾,

P( sup
0⩽𝑡⩽𝑇

|𝜉𝑡| > (𝐾 + 𝑀𝑇 + 𝜌)e𝑀𝑇) ⩽ P( sup
0⩽𝑡⩽𝑇

∣∫
𝑡

0
𝜎(𝜉𝑠, 𝑠)𝑑𝐵𝑠∣ ⩾ 𝜌) ⩽ 2𝑑e−𝑐0𝜌2

Setting 𝑅 = (𝐾 + 𝑀𝑇 + 𝜌)e𝑀𝑇 we have 𝜌 = 𝑅e−𝑀𝑇 − (|𝑘| + 𝑀𝑇 ) and therefore

P( sup
0⩽𝑡⩽𝑇

|𝜉𝑡| > 𝑅) ⩽ 2𝑑 exp(−𝑐0(𝑅e−𝑀𝑇 − (𝐾 + 𝑀𝑇 ))2)

from which we obtain that, for every constant 𝑐 = 𝑐𝑇 strictly smaller than

𝑐0e−2𝑀𝑇 = e−2𝑀𝑇

2𝑇 𝑚𝑘
the inequality (5.2) holds for 𝑅 large enough.

2) Using the hint with 𝑔(𝑥) = 𝑒𝜆𝑥 and the estimate from the previous point we have

E[e
𝜆( sup

0⩽𝑡⩽𝑇
|𝜉𝑡|)

] = 1 + ∫
+∞

0
𝜆e𝜆𝑠P( sup

0⩽𝑡⩽𝑇
|𝜉𝑡| ⩾ 𝑠)𝑑𝑡 < +∞, 𝜆 ∈ R.

If we take instead 𝑔(𝑥) = 𝑒𝛼𝑥2, then

E[e
𝛼( sup

0⩽𝑡⩽𝑇
|𝜉𝑡|2)

] = 1 + ∫
+∞

0
𝛼𝑠e𝛼𝑠2P( sup

0⩽𝑡⩽𝑇
|𝜉𝑡|2 ⩾ 𝑠)𝑑𝑡 < +∞, 𝛼 ∈ R.

which is bounded for all 𝛼 < 𝐶𝑇 .

3) If 𝑢(𝑥) = log(1 + |𝑥|2), let us compute the derivatives:

𝑢𝑥𝑖
(𝑥) = 2𝑥𝑖

1 + |𝑥|2

𝑢𝑥𝑖𝑥𝑗
(𝑥) =

2𝛿𝑖𝑗

1 + |𝑥|2 −
4𝑥𝑖𝑥𝑗

(1 + |𝑥|2)2

In particular, as |𝑥| → +∞ the first-order derivatives go to 0 at least as 𝑥 ↦ |𝑥|−1 and the second-order
derivatives at least as 𝑥 ↦ |𝑥|−2. By Ito’s formula the process 𝑌𝑡 = log(1 + |𝜉𝑡|

2) has stochastic
differential

𝑑𝑌𝑡 = (
𝑚

∑
𝑖=1

𝑢𝑥𝑖
(𝜉𝑡)𝑏𝑖(𝜉𝑡, 𝑡) +1

2

𝑚

∑
𝑖,𝑗

𝑢𝑥𝑖𝑥𝑗
(𝜉𝑡)𝑎𝑖𝑗(𝜉𝑡, 𝑡))𝑑𝑡

+
𝑚

∑
𝑖=1

𝑑

∑
𝑗=1

𝑢𝑥𝑖
(𝜉𝑡)𝜎𝑖𝑗(𝜉𝑡, 𝑡)𝑑𝐵𝑗(𝑡)

where 𝑎 = 𝜎𝜎∗. As 𝑏 and 𝜎 are assumed to satisfy the linear growth bound property, it is clear that all
the terms 𝑢𝑥𝑖

𝑏𝑖, 𝑢𝑥𝑖𝑥𝑗
𝑎𝑖𝑗, 𝑢𝑥𝑖

𝜎𝑖𝑗 are bounded. We can therefore apply 1) which guarantees that there
exists a constant 𝑐 > 0 such that, for large 𝜌,

P( sup
0⩽𝑡⩽𝑇

log(1 + |𝜉𝑡|
2) ⩾ log 𝜌) ⩽ e−𝑐(log 𝜌)2

i.e. P(𝜉∗
𝑇 ⩾ √𝜌 − 1) ⩽ e−𝑐(log 𝜌)2. Letting 𝑅 = √𝜌 − 1, i.e. 𝜌 = 𝑅2 + 1, the inequality becomes, for

large 𝑅,
P(𝜉∗

𝑇 ⩾ 𝑅) ⩽ e−𝑐(log(𝑅2+1))2
⩽ e−𝑐(log 𝑅)2 = 1

𝑅𝑐 log 𝑅 .
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