

Series 4 - October 9, 2024

Exercise 1.

Let $G \in \mathrm{M}^2(0,T)$ with $t \mapsto G(t,\omega)$ continuous for almost every ω and consider a partition $P_\Delta = \{0 = t_0 < t_1 < \ldots < t_{m_\Delta} = T\}$ of [0,T] of size Δ , i.e., $t_j = j\Delta$ for $j = 0,\ldots,m_\Delta$. Assume that $\mathbb{E}[G(t)G(s)]$ is a continuous function of t and s. Show that

$$\lim_{\Delta \to 0} \, \sum_{j=1}^{m_\Delta} G(t_{j-1})(W(t_j) - W(t_{j-1})) = \int_0^T G(t) \, \mathrm{d}W(t) \quad \text{ in } \mathrm{L}^2.$$

Solution

From G define the step process $G_m(r,\omega) = \sum_{j=1}^m G(t_{j-1},\omega)\chi_{[t_{j-1},t_j[}(r))$ and define

$$I_m \coloneqq \mathbb{E}\left[\left(\sum_{j=1}^{m_{\Delta}} G(t_{j-1})(W(t_j) - W(t_{j-1})) - \int_0^T G(t) \mathrm{d}W(t)\right)^2\right]. \tag{1.1}$$

Then, by the Itô isometry we obtain

$$I_{m} = \mathbb{E}\left[\left(\int_{0}^{T} (G_{m}(t) - G(t)) dW(t)\right)^{2}\right] = \int_{0}^{T} \mathbb{E}\left[(G_{m}(t) - G(t))^{2}\right] dt.$$
 (1.2)

Due to the assumption we have

$$\lim_{s \to t} \mathbb{E}[(G(s) - G(t))^2] = 0, \tag{1.3}$$

which implies for all $t \in [0, T]$

$$\lim_{m \to \infty} \mathbb{E}[(G_m(t) - G(t))^2] = 0. \tag{1.4}$$

Moreover, we also have

$$E\big[(G_m(t) - G(t))^2\big] \leqslant 2\big(\mathbb{E}[G_m(t)^2] + \mathbb{E}[G(t)^2]\big) \leqslant 4 \max_{t \in [0,T]} \mathbb{E}[G(t)^2], \tag{1.5}$$

where the right-hand side is finite by assumption. Therefore, applying the dominated convergence theorem we deduce that $I_m \to 0$ as $m \to \infty$, which concludes the proof.

Exercise 2.

Let $(W(t), t \ge 0)$ be a one-dimensional Brownian motion. Without implement the Itô formula but using the construction of the stochastic integral, show that:

$$i) d(W^2) = 2WdW + dt,$$

$$ii) d(tW) = Wdt + tdW.$$

Solution

i) We already know that

$$\int_0^T W(t)\mathrm{d}W(t) = \frac{W(T)^2}{2} - \frac{T}{2},$$

and hence

$$\int_{0}^{s} W(t) dW(t) = \frac{W(s)^{2} - W(r)^{2}}{2} - \frac{s - r}{2},$$

which gives

$$W(s)^2 = W(r)^2 + \int_r^s dt + \int_r^s 2W(t)dW(t),$$

which implies the result.

ii) Observe that for a sequence of partitions $P = \{r = t_0 < t_1 < \dots < t_m = s\}$ such that $\max_{1 \le j \le m} |t_j - t_{j-1}| \to 0$ we have

$$\int_r^s t \mathrm{d}W(t) = \lim_{m \to \infty} \sum_{i=1}^m t_{j-1}(W(t_j) - W(t_{j-1})) \ \text{ in } \mathrm{L}^2(\Omega).$$

As $t \mapsto W(t)$ is continuous a.s., we also have

$$\int_r^s W(t)\mathrm{d}t = \lim_{m \to \infty} \sum_{j=1}^m W(t_j)(t_j - t_{j-1}),$$

indeed since it is an ordinary Riemann sum, the integrand can be evaluated at any point in $[t_{j-1}, t_j]$. Therefore, we obtain

$$\begin{split} \int_{r}^{s} W(t) \mathrm{d}t + \int_{r}^{s} t \mathrm{d}W &= \lim_{m \to \infty} \sum_{j=1}^{m} t_{j-1} (W(t_{j}) - W(t_{j-1})) + W(t_{j}) (t_{j} - t_{j-1}) \\ &= r W(r) - s W(s), \end{split}$$

which shows the result.

Exercise 3.

Let $F: [a,b] \times \mathbb{R} \to \mathbb{R}$ be a continuous function with continuous partial derivatives $\partial F/\partial t$, $\partial F/\partial x$, $\partial^2 F/\partial x^2$ and let $(\partial F/\partial x)(t,x) = f(t,x)$. Show the following analogue of the fundamental theorem of the Leibniz–Newton calculus for the Itô calculus

$$\int_a^b f(t,W(t))\mathrm{d}W(t) = F(t,W(t))\Big|_a^b - \int_a^b \Big(\frac{\partial F}{\partial t}(t,W(t)) + \frac{1}{2}\frac{\partial f}{\partial x}(t,W(t))\Big)\mathrm{d}t.$$

In particular, when F(t,x) = F(x) is independent of t, it reads

$$\int_a^b f(W(t))\mathrm{d}W(t) = F(W(t))\Big|_a^b - \frac{1}{2}\int_a^b f'(W(t))\mathrm{d}t.$$

Then, use this formula to compute

$$\int_0^t W(s)e^{W(s)}\mathrm{d}W(s).$$

Solution

The first result is obtained applying the Itô formula to compute dF(t, W(t)). Then, let $f(x) = xe^x$, which gives

$$F(x) = \int_0^x y e^y dy = (x-1)e^x + 1,$$

$$f'(x) = (x+1)e^x.$$

The formula yields

$$\int_0^t W(s) e^W(s) \mathrm{d}W(s) = \big(W(t) - 1\big) e^{W(t)} + 1 - \frac{1}{2} \int_0^t (1 + W(s)) e^{W(s)} \mathrm{d}s.$$

Exercise 4.

Compute $\mathbb{E}\left[B_s \int_0^t B_u dB_u\right]$ and $\mathbb{E}\left[B_s^2 \left(\int_0^t B_u dB_u\right)^2\right]$ for $0 \leqslant s \leqslant t$. Recall: If $\xi \sim \mathcal{N}(0,1)$, then $\mathbb{E}[\xi^4] = 3$.

Solution

Let $s \leq t$. We have $B_s = \int_0^t 1_{[0,s]}(v) dB_v$ therefore

$$\mathbf{E}\bigg(B_s\int_0^t B_u dB_u\bigg) = \mathbf{E}\bigg(\int_0^t \mathbf{1}_{[0,s[}(v)dB_v\int_0^t B_u dB_u\bigg) = \int_0^t \mathbf{E}\big[\mathbf{1}_{[0,s]}(u)B_u\big]du = 0$$

If $t \leq s$, the same argument leads to the same result. For the second moment, we have

$$\mathbf{E}\left[B_s^2 \biggl(\int_s^t B_u dB_u\biggr)^2\right] = \mathbf{E}\left[\biggl(\int_s^t B_s B_u dB_u\biggr)^2\right] = \mathbf{E}\biggl[\int_s^t B_s^2 B_u^2 du\biggr]$$

Recalling that $s \leq u$ so that $B_u - B_s$ is independent of B_s ,

$$\mathbf{E}\big(B_s^2B_u^2\big) = \mathbf{E}\Big[B_s^2\big(B_u - B_s + B_s\big)^2\Big] = \underbrace{\mathbf{E}\Big[B_s^2\big(B_u - B_s\big)^2\Big]}_{=s(u-s)} + 2\underbrace{\mathbf{E}\big[B_s^3\big(B_u - B_s\big)\big]}_{=0} + \mathbf{E}\big(B_s^4\big).$$

We can write $B_s=\sqrt{s}Z$ where $Z\sim N(0,1)$ and therefore ${\rm E}(B_s^4)=s^2{\rm E}(Z^4)=3s^2$. In conclusion, ${\rm E}(B_s^2B_u^2)=s(u-s)+3s^2$ and

$$\mathrm{E}\left[B_{s}^{2}\bigg(\int_{s}^{t}B_{u}dB_{u}\bigg)^{2}\right] = \int_{s}^{t}s(u-s) + 3s^{2}du = \frac{1}{2}s(t-s)^{2} + 3s^{2}(t-s).$$

Exercise 5.

Let $X \in M^2([0,T])$ and consider the stochastic integral $I_t = \int_0^t X_s dB_s$.

1) Use Itô's formula to show that

$$\left|I_{t}\right|^{p} = p \int_{0}^{t} \left|I_{s}\right|^{|p-1} \mathrm{sgn}(I_{s}) X_{s} dB_{s} + \frac{1}{2} p(p-1) \int_{0}^{t} \left|I_{s}\right|^{p-2} X_{s}^{2} ds.$$

2) Assume $|I_t| \leqslant K$ a.s. for some K > 0. Deduce that there exists $c_p = C(T, p)$ such that

$$\mathbf{E}\left(\sup_{0\leqslant t\leqslant T}\left|\int_{0}^{t}X_{s}dB_{s}\right|^{p}\right)\leqslant c_{p}\mathbf{E}\left[\left(\int_{0}^{T}\left|X_{s}\right|^{2}ds\right)^{\frac{p}{2}}\right]\leqslant c_{p}T^{\frac{p-2}{2}}\mathbf{E}\left(\int_{0}^{T}\left|X_{s}\right|^{p}ds\right)^{\frac{p}{2}}$$

for some constant $c_p > 0$.

Hint. Use Doob's martingale and Holder inequalities.

3) Show that 2) works without asking for $|I_t| \leq K$ a.s..

Hint. Take $\tau_n = \inf\{t \leqslant T; |I_t| \geqslant n\}$ and consider the martingale $I_{t \wedge \tau_n}$. Then take the limit for $n \to \infty$ and conclude by Fatou's lemma.

Solution

1) Let us apply Ito's formula to the function $f(x) = |x|^p$ (which is twice differentiable, as $p \ge 2$) and to the process I whose stochastic differential is $dI_t = X_t dB_t$. We have $f'(x) = p \operatorname{sgn}(x) |x|^{p-1}$, $f''(x) = p(p-1)|x|^{p-2}$, where sgn denotes the "sign" function (= 1 for $x \ge 0$ and -1 for x < 0). Then by Ito's formula

$$\begin{split} d{|I_t|}^p &= f'(I_t)dI_t + \frac{1}{2}f''(I_t)d\langle I\rangle_t \\ &= {|I_s|}^{|p-1}\operatorname{sgn}(I_s)X_sdB_s + \frac{1}{2}p(p-1){|I_s|}^{p-2}X_s^2ds, \end{split}$$

i.e., as $I_0 = 0$,

$$|I_t|^p = p \int_0^t |I_s|^{p-1} \operatorname{sgn}(I_s) X_s dB_s + \frac{1}{2} p(p-1) \int_0^t |I_s|^{p-2} X_s^2 ds.$$

2) One can of course assume $X \in M^p([0,T])$, otherwise the statement is obvious (the right-hand side is $=+\infty$). Let $I_t=\int_0^t X_s dB_s$ and define $I_t^*=\sup_{0\leqslant s\leqslant t}|I_s|$. $(I_t)_t$ is a square integrable martingale and by Doob's inequality

$$\mathbb{E}\left(\sup_{0 \le t \le T} \left| \int_0^t X_s dB_s \right|^p \right) = \mathbb{E}[I_t^{*p}] \leqslant \left(\frac{p}{p-1}\right)^p \mathbb{E}[|I_T|^p].$$

Let us now first assume $|I_T^*| \leq K$: this guarantees that $|I_T|^{p-1} \operatorname{sgn}(I_T) \times ([0,T])$. Let us take the expectation recalling that the stochastic integral has zero mean. By Doob's inequality and Hölder's inequality with the exponents $\frac{p}{2}$ and $\frac{p}{p-2}$, we have

$$\begin{split} \mathbf{E}[I_T^{*p}] &\leqslant \left(\frac{p}{p-1}\right)^p \mathbf{E}[|I_T|^p] = \underbrace{\frac{1}{2} \left(\frac{p}{p-1}\right)^p p(p-1)}_{:=c_0} \mathbf{E}\left(\int_0^T |I_s|^{p-2} X_s^2 ds\right) \\ &\leqslant c_0 \mathbf{E}\left(I_T^{*p-2} \int_0^T X_s^2 ds\right) \leqslant c_0 \mathbf{E}[I_T^{*p}]^{1-\frac{2}{p}} \mathbf{E}\left[\left(\int_0^T X_s^2 ds\right)^{\frac{p}{2}}\right]^{\frac{2}{p}} \end{split}$$

As we assume $|I_T^*| \leq K$, $\mathrm{E}[I_T^{*p}] < +\infty$ and in the previous inequality we can divide by $\mathrm{E}[I_T^{*p}]^{1-\frac{2}{p}}$, which gives

$$\mathbb{E}[I_T^{*p}]^{\frac{2}{p}} \leqslant c_0 \mathbb{E}\left[\left(\int_0^T X_s^2 ds\right)^{\frac{p}{2}}\right]^{\frac{z}{p}}$$

i.e.

$$\mathrm{E}\big[I_T^{*p}\big] \leqslant c_0^{p/2} \mathrm{E}\left[\left(\int_0^T X_s^2 ds\right)^{\frac{p}{2}}\right] \leqslant c_0^{p/2} T^{\frac{p-2}{p}} \mathrm{E}\left[\left(\int_0^T |X_s|^p ds\right)\right].$$

3) Let $\tau_n = \inf\{t \leqslant T; |I_t| \geqslant n\}$ ($\tau(n) = T$ if $\{\} = \emptyset$). $(\tau_n)_n$ is a sequence of stopping times increasing to T, as the paths of I are continuous and then also bounded. We have therefore $I_{\tau_n \wedge t} \to I_t$ as $n \to \infty$ and

$$I_{t\wedge\tau_n} = \int_0^{t\wedge\tau_n} X_s dB_s = \int_0^t X_s 1_{\{s<\tau_n\}} dB_s,$$

so that one has

$$\mathrm{E}\big(I_{T \wedge \tau_n}^*{}^p\big) \leqslant c_0^{p/2} \mathrm{E}\left[\left(\int_0^T \! |X_s|^2 1_{\{s < \tau_n\}} ds\right)^{\frac{p}{2}}\right] \leqslant c_0^{p/2} \mathrm{E}\left[\left(\int_0^T \! |X_s|^2 ds\right)^{\frac{p}{2}}\right]$$

and we can just apply Fatou's lemma. Finally, again by Hölder's inequality,

$$\mathbf{E}\left[\left(\int_{0}^{T}\!\left|X_{s}\right|^{2}\!ds\right)^{\frac{p}{2}}\right]\leqslant T^{\frac{p-2}{p}}\mathbf{E}\left[\int_{0}^{T}\!\left|X_{s}\right|^{p}\!ds\right].$$

Exercise 6.

Consider the Itô process

$$X_t = X_0 + \int_0^t f_s \, ds + \int_0^t g_s \, dB_s = X_0 + J_t + I_t$$

where $\{B_t\}_t$ is a standard Brownian motion, $f \in M^1([0,T])$, and $g \in M^2([0,T])$. Let us focus first on the process

$$I_t = \int_0^t g_s \, dB_s.$$

- 1) Show that I_t is a martingale.
- 2) Show that

$$\langle I \rangle_t = \int_0^t g_s^2 \, ds,$$

where $\langle I \rangle_t$ is the quadratic variation of I_t (i.e. that $I_t^2 - \langle I \rangle_t$ is a martingale).

It can be shown that

$$\langle I \rangle_t = \lim_{\pi \to 0} \sum_{i=0}^{n-1} (I_{t_{j+1}} - I_{t_j})^2 \text{ in probability},$$

where $\pi = \{0 = t_0 < \dots < t_n = t\}$ is any partition of [0, t] and $|\pi| = \max_i |t_{j+1} - t_j|$.

We focus now on the process X_t . By definition, $\langle X \rangle_t = \langle I \rangle_t = \int_0^t g_s^2 \, ds$.

3) Show that

$$\langle X \rangle_t = \lim_{\pi \to 0} \sum_{j=0}^{n-1} (X_{t_{j+1}} - X_{t_j})^2$$
 in probability

4) Consider another Itô process

$$Y_t = Y_0 + \int_0^t \tilde{f}_s \, ds + \int_0^t \tilde{g}_s \, dB_s = X_0 + \tilde{J}_t + \tilde{I}_t$$

with $\tilde{f}\in M^1([0,T]),$ and $\tilde{g}\in M^2([0,T]),$ by definition

$$\langle X, Y \rangle = \langle I, \tilde{I} \rangle_t = \int_0^t g_s \tilde{g}_s ds.$$

5) Show that

$$\langle X,Y \rangle = \lim_{\pi \to 0} \sum_{j=0}^{n-1} (X_{t_{j+1}} - X_{t_j}) (Y_{t_{j+1}} - Y_{t_j}) \text{ in probability},$$

using that

$$\langle I, \tilde{I} \rangle_t = \lim_{\pi \to 0} \sum_{j=0}^{n-1} (I_{t_{j+1}} - I_{t_j}) (\tilde{I}_{t_{j+1}} - \tilde{I}_{t_j}) \text{ in probability}.$$

Solution

1) If t > s one has

$$\mathrm{E}[I(t) - I(s) \mid \mathcal{F}_s] = \mathrm{E}\left[\underbrace{\int_s^t X_u dB_u}_{\mathcal{F}_s - \mathrm{independent}} \mid \mathcal{F}_s\right] = 0 \quad \text{ a.s.}$$

and therefore we have the martingale relation

$$\mathrm{E}[I(t)\mid\mathcal{F}_s] = I(s) + \mathrm{E}[I(t) - I(s)\mid\mathcal{F}_s] = I(s) \quad \text{ a.s. } .$$

2) For the quadratic variation property we need to show that $I(t)^2 - \langle I \rangle_t$ is a martingale

$$\begin{split} & \mathbf{E}\big[I(t)^2 - \langle I\rangle_t \mid \mathcal{F}_s\big] = \mathbf{E}\big[(I(t) - I(s))^2 + 2((I(t) - I(s))I(s)) + I(t)^2 - (\langle I\rangle_t - \langle I\rangle_s) - \langle I\rangle_s \mid \mathcal{F}_s\big] \\ & = \mathbf{E}\big[(I(t) - I(s))^2 \mid \mathcal{F}_s\big] + 2\mathbf{E}\big[(I(t) - I(s))I(s) \mid \mathcal{F}_s\big] + I(s)^2 - \mathbb{E}\big[\int_s^t X_s^2 ds\big] - \langle I\rangle_s \\ & = \mathbb{E}\big[(\int_s^t X_s dB_s)^2\big] + I(s)^2 - \mathbb{E}\big[\int_s^t X_s^2 ds\big] - \langle I\rangle_s \\ & = I(s)^2 - \langle I\rangle_s. \end{split} \tag{6.1}$$

3) One has

$$\begin{split} \sum_{j=0}^{n-1} (X_{t_{j+1}} - X_{t_{j}})^{2} &= \sum_{j=0}^{n-1} (\int_{t_{j}}^{t_{j+1}} f_{s} \, ds + \int_{t_{j}}^{t_{j+1}} g_{s} \, dB_{s})^{2} \\ &= \underbrace{\sum_{j=0}^{n-1} (\int_{t_{j}}^{t_{j+1}} f_{s} \, ds)^{2}}_{T_{1}} + \underbrace{2 \sum_{j=0}^{n-1} (\int_{t_{j}}^{t_{j+1}} f_{s} \, ds) (\int_{t_{j}}^{t_{j+1}} g_{s} \, dB_{s})}_{T_{2}} + \underbrace{\sum_{j=0}^{n-1} (\int_{t_{j}}^{t_{j+1}} g_{s} \, dB_{s})^{2}}_{T_{2}} \end{split} \tag{6.2}$$

Since the function $t \to f_t(\cdot)$ is integrable in t $(f \in \mathcal{M}^1([0,T]))$, let $N \in F$ be s.t. $\forall \omega \in N^C$ we have $N = \int_0^T f_s ds < \infty$ then $\forall \omega \in N^C$

$$\begin{split} |T_1(\omega)| &\leqslant \max_j |I_{t_{j+1}} - I_{t_j}| \sum_{j=0}^{n-1} |\int_{t_j}^{t_{j+1}} f_s \, ds| \\ &\leqslant \max_j |I_{t_{j+1}} - I_{t_j}|| \int_0^t f_s \, ds| \to 0 \end{split} \tag{6.3}$$

Hence $T_1 \to 0$ a.s. and in probability. Similarly for T_2

$$\begin{split} |T_2(\omega)| &\leqslant 2 \max_j |I_{t_{j+1}} - I_{t_j}|| \int_{t_j}^{t_{j+1}} f_s \, ds| \\ &\leqslant 2 \max_j |I_{t_{j+1}} - I_{t_j}|| \int_0^t f_s \, ds| \to 0 \end{split} \tag{6.4}$$

since I_t is continuous. Hence $T_2 \to 0$ a.s. and in probability. Finally, $T_3 \to \int_0^t g_s^2 \, ds$ in probability by L^2 convergence of the construction of the stochastic integral.

4) Analogous to Point 3).