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Exercise 1.
Let 𝐺 ∈ M2(0, 𝑇 ) with 𝑡 ↦ 𝐺(𝑡, 𝜔) continuous for almost every 𝜔 and consider a partition 𝑃𝛥 = {0 =

𝑡0 < 𝑡1 < … < 𝑡𝑚𝛥
= 𝑇 } of [0, 𝑇 ] of size 𝛥, i.e., 𝑡𝑗 = 𝑗𝛥 for 𝑗 = 0, … , 𝑚𝛥. Assume that E[𝐺(𝑡)𝐺(𝑠)] is a

continuous function of 𝑡 and 𝑠. Show that

lim
𝛥→0

𝑚𝛥

∑
𝑗=1

𝐺(𝑡𝑗−1)(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1)) = ∫
𝑇

0
𝐺(𝑡) d𝑊(𝑡) in L2.

Solution

From 𝐺 define the step process 𝐺𝑚(𝑟, 𝜔) = ∑𝑚
𝑗=1 𝐺(𝑡𝑗−1, 𝜔)𝜒[𝑡𝑗−1,𝑡𝑗[(𝑟) and define

𝐼𝑚 ≔ E⎡⎢
⎣

(
𝑚𝛥

∑
𝑗=1

𝐺(𝑡𝑗−1)(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1)) − ∫
𝑇

0
𝐺(𝑡)d𝑊(𝑡))

2

⎤⎥
⎦

. (1.1)

Then, by the Itô isometry we obtain

𝐼𝑚 = E⎡⎢
⎣

(∫
𝑇

0
(𝐺𝑚(𝑡) − 𝐺(𝑡))d𝑊(𝑡))

2

⎤⎥
⎦

= ∫
𝑇

0
E[(𝐺𝑚(𝑡) − 𝐺(𝑡))2]d𝑡. (1.2)

Due to the assumption we have
lim
𝑠→𝑡

E[(𝐺(𝑠) − 𝐺(𝑡))2] = 0, (1.3)

which implies for all 𝑡 ∈ [0, 𝑇 ]
lim

𝑚→∞
E[(𝐺𝑚(𝑡) − 𝐺(𝑡))2] = 0. (1.4)

Moreover, we also have

𝐸[(𝐺𝑚(𝑡) − 𝐺(𝑡))2] ⩽ 2(E[𝐺𝑚(𝑡)2] + E[𝐺(𝑡)2]) ⩽ 4 max
𝑡∈[0,𝑇 ]

E[𝐺(𝑡)2], (1.5)

where the right-hand side is finite by assumption. Therefore, applying the dominated convergence theorem we
deduce that 𝐼𝑚 → 0 as 𝑚 → ∞, which concludes the proof.

Exercise 2.
Let (𝑊(𝑡), 𝑡 ⩾ 0) be a one-dimensional Brownian motion. Without implement the Itô formula but using

the construction of the stochastic integral, show that:

i) d(𝑊 2) = 2𝑊d𝑊 + d𝑡,

ii) d(𝑡𝑊) = 𝑊d𝑡 + 𝑡d𝑊.

Solution

1



i) We already know that

∫
𝑇

0
𝑊(𝑡)d𝑊(𝑡) = 𝑊(𝑇 )2

2
− 𝑇

2
,

and hence
∫

𝑠

𝑟
𝑊(𝑡)d𝑊(𝑡) = 𝑊(𝑠)2−𝑊(𝑟)2

2
− 𝑠−𝑟

2
,

which gives

𝑊(𝑠)2 = 𝑊(𝑟)2 + ∫
𝑠

𝑟
d𝑡 + ∫

𝑠

𝑟
2𝑊(𝑡)d𝑊(𝑡),

which implies the result.

ii) Observe that for a sequence of partitions 𝑃 = {𝑟 = 𝑡0 < 𝑡1 < … < 𝑡𝑚 = 𝑠} such that max1⩽𝑗⩽𝑚 |𝑡𝑗 −
𝑡𝑗−1| → 0 we have

∫
𝑠

𝑟
𝑡d𝑊(𝑡) = lim

𝑚→∞

𝑚

∑
𝑗=1

𝑡𝑗−1(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1)) in L2(𝛺).

As 𝑡 ↦ 𝑊(𝑡) is continuous a.s., we also have

∫
𝑠

𝑟
𝑊(𝑡)d𝑡 = lim

𝑚→∞

𝑚

∑
𝑗=1

𝑊(𝑡𝑗)(𝑡𝑗 − 𝑡𝑗−1),

indeed since it is an ordinary Riemann sum, the integrand can be evaluated at any point in [𝑡𝑗−1, 𝑡𝑗].
Therefore, we obtain

∫
𝑠

𝑟
𝑊(𝑡)d𝑡 + ∫

𝑠

𝑟
𝑡d𝑊 = lim

𝑚→∞

𝑚

∑
𝑗=1

𝑡𝑗−1(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1)) + 𝑊(𝑡𝑗)(𝑡𝑗 − 𝑡𝑗−1)

= 𝑟𝑊(𝑟) − 𝑠𝑊(𝑠),

which shows the result.

Exercise 3.
Let 𝐹∶ [𝑎, 𝑏]×R → R be a continuous function with continuous partial derivatives ∂𝐹/∂𝑡, ∂𝐹/∂𝑥, ∂2𝐹/∂𝑥2

and let (∂𝐹/∂𝑥)(𝑡, 𝑥) = 𝑓(𝑡, 𝑥). Show the following analogue of the fundamental theorem of the Leibniz–
Newton calculus for the Itô calculus

∫
𝑏

𝑎
𝑓(𝑡, 𝑊(𝑡))d𝑊(𝑡) = 𝐹(𝑡, 𝑊(𝑡))∣

𝑏

𝑎
− ∫

𝑏

𝑎
(∂𝐹

∂𝑡 (𝑡, 𝑊(𝑡)) + 1
2

∂𝑓
∂𝑥(𝑡, 𝑊(𝑡)))d𝑡.

In particular, when 𝐹(𝑡, 𝑥) = 𝐹(𝑥) is independent of 𝑡, it reads

∫
𝑏

𝑎
𝑓(𝑊(𝑡))d𝑊(𝑡) = 𝐹(𝑊(𝑡))∣

𝑏

𝑎
− 1

2 ∫
𝑏

𝑎
𝑓 ′(𝑊(𝑡))d𝑡.

Then, use this formula to compute

∫
𝑡

0
𝑊(𝑠)𝑒𝑊(𝑠)d𝑊(𝑠).

Solution

The first result is obtained applying the Itô formula to compute d𝐹(𝑡, 𝑊(𝑡)). Then, let 𝑓(𝑥) = 𝑥𝑒𝑥, which
gives

𝐹(𝑥) = ∫
𝑥

0
𝑦𝑒𝑦d𝑦 = (𝑥 − 1)𝑒𝑥 + 1,

𝑓 ′(𝑥) = (𝑥 + 1)𝑒𝑥.
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The formula yields

∫
𝑡

0
𝑊(𝑠)𝑒𝑊(𝑠)d𝑊(𝑠) = (𝑊(𝑡) − 1)𝑒𝑊(𝑡) + 1 − 1

2 ∫
𝑡

0
(1 + 𝑊(𝑠))𝑒𝑊(𝑠)d𝑠.

Exercise 4.
Compute E[𝐵𝑠 ∫𝑡

0 𝐵𝑢d𝐵𝑢] and E[𝐵2
𝑠(∫𝑡

0 𝐵𝑢d𝐵𝑢)
2
] for 0 ⩽ 𝑠 ⩽ 𝑡.

Recall: If 𝜉 ∼ 𝒩(0, 1), then E[𝜉4] = 3.

Solution
Let 𝑠 ⩽ 𝑡. We have 𝐵𝑠 = ∫𝑡

0 1[0,𝑠[(𝑣)𝑑𝐵𝑣 therefore,

E(𝐵𝑠 ∫
𝑡

0
𝐵𝑢𝑑𝐵𝑢) = E(∫

𝑡

0
1[0,𝑠[(𝑣)𝑑𝐵𝑣 ∫

𝑡

0
𝐵𝑢𝑑𝐵𝑢) = ∫

𝑡

0
E[1[0,𝑠](𝑢)𝐵𝑢]𝑑𝑢 = 0

If 𝑡 ⩽ 𝑠, the same argument leads to the same result. For the second moment, we have

E[𝐵2
𝑠(∫

𝑡

𝑠
𝐵𝑢𝑑𝐵𝑢)

2

] = E[(∫
𝑡

𝑠
𝐵𝑠𝐵𝑢𝑑𝐵𝑢)

2

] = E[∫
𝑡

𝑠
𝐵2

𝑠𝐵2
𝑢𝑑𝑢]

Recalling that 𝑠 ⩽ 𝑢 so that 𝐵𝑢 − 𝐵𝑠 is independent of 𝐵𝑠,

E(𝐵2
𝑠𝐵2

𝑢) = E[𝐵2
𝑠(𝐵𝑢 − 𝐵𝑠 + 𝐵𝑠)2] = E[𝐵2𝑠(𝐵𝑢 − 𝐵𝑠)2]⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑠(𝑢−𝑠)

+2 E[𝐵3𝑠(𝐵𝑢 − 𝐵𝑠)]⏟⏟⏟⏟⏟⏟⏟
=0

+E(𝐵4
𝑠).

We can write 𝐵𝑠 =
√

𝑠𝑍 where 𝑍 ∼ 𝑁(0, 1) and therefore E(𝐵4
𝑠) = 𝑠2E(𝑍4) = 3𝑠2. In conclusion,

E(𝐵2
𝑠𝐵2

𝑢) = 𝑠(𝑢 − 𝑠) + 3𝑠2 and

E[𝐵2
𝑠(∫

𝑡

𝑠
𝐵𝑢𝑑𝐵𝑢)

2

] = ∫
𝑡

𝑠
𝑠(𝑢 − 𝑠) + 3𝑠2𝑑𝑢 = 1

2𝑠(𝑡 − 𝑠)2 + 3𝑠2(𝑡 − 𝑠).

Exercise 5.
Let 𝑋 ∈ 𝑀2([0, 𝑇 ]) and consider the stochastic integral 𝐼𝑡 = ∫𝑡

0 𝑋𝑠𝑑𝐵𝑠.

1) Use Itô’s formula to show that

|𝐼𝑡|
𝑝 = 𝑝 ∫

𝑡

0
|𝐼𝑠|∣𝑝−1 sgn(𝐼𝑠)𝑋𝑠𝑑𝐵𝑠 + 1

2𝑝(𝑝 − 1) ∫
𝑡

0
|𝐼𝑠|𝑝−2𝑋2

𝑠𝑑𝑠.

2) Assume |𝐼𝑡| ⩽ 𝐾 a.s. for some 𝐾 > 0. Deduce that there exists 𝑐𝑝 = 𝐶(𝑇 , 𝑝) such that

E( sup
0⩽𝑡⩽𝑇

∣∫
𝑡

0
𝑋𝑠𝑑𝐵𝑠∣

𝑝

) ⩽ 𝑐𝑝E⎡
⎢
⎣

(∫
𝑇

0
|𝑋𝑠|2𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

⩽ 𝑐𝑝𝑇
𝑝−2

2 E(∫
𝑇

0
|𝑋𝑠|𝑝𝑑𝑠)

for some constant 𝑐𝑝 > 0.
Hint. Use Doob’s martingale and Holder inequalities.

3) Show that 2) works without asking for |𝐼𝑡| ⩽ 𝐾 a.s. .
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Hint. Take 𝜏𝑛 = inf{𝑡 ⩽ 𝑇 ; |𝐼𝑡| ⩾ 𝑛} and consider the martingale 𝐼𝑡∧𝜏𝑛
. Then take the limit for 𝑛 → ∞

and conclude by Fatou’s lemma.

Solution

1) Let us apply Ito’s formula to the function 𝑓(𝑥) = |𝑥|𝑝 (which is twice differentiable, as 𝑝 ⩾ 2 ) and
to the process 𝐼 whose stochastic differential is 𝑑𝐼𝑡 = 𝑋𝑡𝑑𝐵𝑡. We have 𝑓 ′(𝑥) = 𝑝 sgn(𝑥)|𝑥|𝑝−1, 𝑓 ′′(𝑥) =
𝑝(𝑝 − 1)|𝑥|𝑝−2, where sgn denotes the ”sign” function ( = 1 for 𝑥 ⩾ 0 and -1 for 𝑥 < 0 ). Then by Ito’s
formula

𝑑|𝐼𝑡|
𝑝 = 𝑓 ′(𝐼𝑡)𝑑𝐼𝑡 + 1

2𝑓 ′′(𝐼𝑡)𝑑⟨𝐼⟩𝑡

= |𝐼𝑠|∣𝑝−1 sgn(𝐼𝑠)𝑋𝑠𝑑𝐵𝑠 + 1
2𝑝(𝑝 − 1)|𝐼𝑠|𝑝−2𝑋2

𝑠𝑑𝑠,

i.e., as 𝐼0 = 0,

|𝐼𝑡|
𝑝 = 𝑝 ∫

𝑡

0
|𝐼𝑠|∣𝑝−1 sgn(𝐼𝑠)𝑋𝑠𝑑𝐵𝑠 + 1

2𝑝(𝑝 − 1) ∫
𝑡

0
|𝐼𝑠|𝑝−2𝑋2

𝑠𝑑𝑠.

2) One can of course assume 𝑋 ∈ 𝑀𝑝([0, 𝑇 ]), otherwise the statement is obvious (the right-hand side is
= +∞ ). Let 𝐼𝑡 = ∫𝑡

0 𝑋𝑠𝑑𝐵𝑠 and define 𝐼∗
𝑡 = sup0⩽𝑠⩽𝑡|𝐼𝑠|. (𝐼𝑡)𝑡 is a square integrable martingale and

by Doob’s inequality

E( sup
0⩽𝑡⩽𝑇

∣∫
𝑡

0
𝑋𝑠𝑑𝐵𝑠∣

𝑝

) = E[𝐼∗𝑝
𝑡 ] ⩽ ( 𝑝

𝑝 − 1)
𝑝
E[|𝐼𝑇|𝑝].

Let us now first assume |𝐼∗
𝑇| ⩽ 𝐾 : this guarantees that |𝐼⋅|

𝑝−1 sgn(𝐼⋅)𝑋⋅ ∈ 𝑀2([0, 𝑇 ]). Let us take the
expectation recalling that the stochastic integral has zero mean. By Doob’s inequality and Hölder’s
inequality with the exponents 𝑝

2
and 𝑝

𝑝−2
, we have

E[𝐼∗𝑝
𝑇 ] ⩽ ( 𝑝

𝑝 − 1)
𝑝
E[|𝐼𝑇|𝑝] = 1

2( 𝑝
𝑝 − 1)

𝑝
𝑝(𝑝 − 1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
∶=𝑐0

E(∫
𝑇

0
|𝐼𝑠|𝑝−2𝑋2

𝑠𝑑𝑠)

⩽ 𝑐0E(𝐼∗𝑝−2
𝑇 ∫

𝑇

0
𝑋2

𝑠𝑑𝑠) ⩽ 𝑐0E[𝐼∗𝑝
𝑇 ]1− 2

𝑝 E⎡
⎢
⎣

(∫
𝑇

0
𝑋2

𝑠𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

2
𝑝

As we assume |𝐼∗
𝑇| ⩽ 𝐾, E[𝐼∗𝑝

𝑇 ] < +∞ and in the previous inequality we can divide by E[𝐼∗𝑝
𝑇 ]1− 2

𝑝 , which
gives

E[𝐼∗𝑝
𝑇 ]

2
𝑝 ⩽ 𝑐0E⎡

⎢
⎣

(∫
𝑇

0
𝑋2

𝑠𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

2
𝑝

i.e.

E[𝐼∗𝑝
𝑇 ] ⩽ 𝑐𝑝/2

0 E⎡
⎢
⎣

(∫
𝑇

0
𝑋2

𝑠𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

⩽ 𝑐𝑝/2
0 𝑇

𝑝−2
𝑝 E[(∫

𝑇

0
|𝑋𝑠|𝑝𝑑𝑠)].

3) Let 𝜏𝑛 = inf{𝑡 ⩽ 𝑇 ; |𝐼𝑡| ⩾ 𝑛} ( 𝜏(𝑛) = 𝑇 if {}= ∅).(𝜏𝑛)𝑛 is a sequence of stopping times increasing to 𝑇,
as the paths of 𝐼 are continuous and then also bounded. We have therefore 𝐼𝜏𝑛∧𝑡 → 𝐼𝑡 as 𝑛 → ∞ and

𝐼𝑡∧𝜏𝑛
= ∫

𝑡∧𝜏𝑛

0
𝑋𝑠𝑑𝐵𝑠 = ∫

𝑡

0
𝑋𝑠1{𝑠<𝜏𝑛}𝑑𝐵𝑠,
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so that one has

E(𝐼 ∗

𝑇 ∧𝜏𝑛
𝑝) ⩽ 𝑐𝑝/2

0 E⎡
⎢
⎣

(∫
𝑇

0
|𝑋𝑠|21{𝑠<𝜏𝑛}𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

⩽ 𝑐𝑝/2
0 E⎡

⎢
⎣

(∫
𝑇

0
|𝑋𝑠|2𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

and we can just apply Fatou’s lemma. Finally, again by Hölder’s inequality,

E⎡
⎢
⎣

(∫
𝑇

0
|𝑋𝑠|2𝑑𝑠)

𝑝
2 ⎤
⎥
⎦

⩽ 𝑇
𝑝−2

𝑝 E[∫
𝑇

0
|𝑋𝑠|𝑝𝑑𝑠].

Exercise 6.
Consider the Itô process

𝑋𝑡 = 𝑋0 + ∫
𝑡

0
𝑓𝑠 𝑑𝑠 + ∫

𝑡

0
𝑔𝑠 𝑑𝐵𝑠 = 𝑋0 + 𝐽𝑡 + 𝐼𝑡

where {𝐵𝑡}𝑡 is a standard Brownian motion, 𝑓 ∈ 𝑀1([0, 𝑇 ]), and 𝑔 ∈ 𝑀2([0, 𝑇 ]).
Let us focus first on the process

𝐼𝑡 = ∫
𝑡

0
𝑔𝑠 𝑑𝐵𝑠.

1) Show that 𝐼𝑡 is a martingale.

2) Show that

⟨𝐼⟩𝑡 = ∫
𝑡

0
𝑔2

𝑠 𝑑𝑠,

where ⟨𝐼⟩𝑡 is the quadratic variation of 𝐼𝑡 (i.e. that 𝐼2
𝑡 − ⟨𝐼⟩𝑡 is a martingale).

It can be shown that

⟨𝐼⟩𝑡 = lim
𝜋→0

𝑛−1

∑
𝑗=0

(𝐼𝑡𝑗+1
− 𝐼𝑡𝑗

)2 in probability,

where 𝜋 = {0 = 𝑡0 < ⋯ < 𝑡𝑛 = 𝑡} is any partition of [0, 𝑡] and |𝜋| = max
𝑗

|𝑡𝑗+1 − 𝑡𝑗|.

We focus now on the process 𝑋𝑡. By definition, ⟨𝑋⟩𝑡 = ⟨𝐼⟩𝑡 = ∫𝑡
0 𝑔2

𝑠 𝑑𝑠.

3) Show that

⟨𝑋⟩𝑡 = lim
𝜋→0

𝑛−1

∑
𝑗=0

(𝑋𝑡𝑗+1
− 𝑋𝑡𝑗

)2 in probability

.

4) Consider another Itô process

𝑌𝑡 = 𝑌0 + ∫
𝑡

0

̃𝑓𝑠 𝑑𝑠 + ∫
𝑡

0
̃𝑔𝑠 𝑑𝐵𝑠 = 𝑋0 + ̃𝐽𝑡 + ̃𝐼𝑡

with ̃𝑓 ∈ 𝑀1([0, 𝑇 ]), and ̃𝑔 ∈ 𝑀2([0, 𝑇 ]), by definition

⟨𝑋, 𝑌 ⟩ = ⟨𝐼, ̃𝐼⟩𝑡 = ∫
𝑡

0
𝑔𝑠 ̃𝑔𝑠𝑑𝑠.
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5) Show that

⟨𝑋, 𝑌 ⟩ = lim
𝜋→0

𝑛−1

∑
𝑗=0

(𝑋𝑡𝑗+1
− 𝑋𝑡𝑗

)(𝑌𝑡𝑗+1
− 𝑌𝑡𝑗

) in probability,

using that

⟨𝐼, ̃𝐼⟩𝑡 = lim
𝜋→0

𝑛−1

∑
𝑗=0

(𝐼𝑡𝑗+1
− 𝐼𝑡𝑗

)( ̃𝐼𝑡𝑗+1
− ̃𝐼𝑡𝑗

) in probability.

Solution

1) If 𝑡 > 𝑠 one has

E[𝐼(𝑡) − 𝐼(𝑠) ∣ ℱ𝑠] = E
⎡
⎢
⎢
⎣

∫
𝑡

𝑠
𝑋𝑢𝑑𝐵𝑢

⏟⏟⏟⏟⏟
ℱ𝑠−independent

∣ ℱ𝑠

⎤
⎥
⎥
⎦

= 0 a.s.

and therefore we have the martingale relation

E[𝐼(𝑡) ∣ ℱ𝑠] = 𝐼(𝑠) + E[𝐼(𝑡) − 𝐼(𝑠) ∣ ℱ𝑠] = 𝐼(𝑠) a.s. .

2) For the quadratic variation property we need to show that 𝐼(𝑡)2 − ⟨𝐼⟩𝑡 is a martingale

E[𝐼(𝑡)2 − ⟨𝐼⟩𝑡 ∣ ℱ𝑠] = E[(𝐼(𝑡) − 𝐼(𝑠))2 + 2((𝐼(𝑡) − 𝐼(𝑠))𝐼(𝑠)) + 𝐼(𝑡)2 − (⟨𝐼⟩𝑡 − ⟨𝐼⟩𝑠) − ⟨𝐼⟩𝑠 ∣ ℱ𝑠]

= E[(𝐼(𝑡) − 𝐼(𝑠))2 ∣ ℱ𝑠] + 2E[(𝐼(𝑡) − 𝐼(𝑠))𝐼(𝑠) ∣ ℱ𝑠] + 𝐼(𝑠)2 − E[∫
𝑡

𝑠
𝑋2

𝑠𝑑𝑠] − ⟨𝐼⟩𝑠

= E[(∫
𝑡

𝑠
𝑋𝑠𝑑𝐵𝑠)2] + 𝐼(𝑠)2 − E[∫

𝑡

𝑠
𝑋2

𝑠𝑑𝑠] − ⟨𝐼⟩𝑠

= 𝐼(𝑠)2 − ⟨𝐼⟩𝑠.
(6.1)

3) One has
𝑛−1

∑
𝑗=0

(𝑋𝑡𝑗+1
− 𝑋𝑡𝑗

)2 =
𝑛−1

∑
𝑗=0

(∫
𝑡𝑗+1

𝑡𝑗

𝑓𝑠 𝑑𝑠 + ∫
𝑡𝑗+1

𝑡𝑗

𝑔𝑠 𝑑𝐵𝑠)2

=
𝑛−1

∑
𝑗=0

(∫
𝑡𝑗+1

𝑡𝑗

𝑓𝑠 𝑑𝑠)2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇1

+ 2
𝑛−1

∑
𝑗=0

(∫
𝑡𝑗+1

𝑡𝑗

𝑓𝑠 𝑑𝑠)(∫
𝑡𝑗+1

𝑡𝑗

𝑔𝑠 𝑑𝐵𝑠)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇2

+
𝑛−1

∑
𝑗=0

(∫
𝑡𝑗+1

𝑡𝑗

𝑔𝑠 𝑑𝐵𝑠)2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇3

(6.2)

Since the function 𝑡 → 𝑓𝑡(⋅) is integrable in 𝑡 (𝑓 ∈ ℳ1([0, 𝑇 ])), let 𝑁 ∈ 𝐹 be s.t. ∀𝜔 ∈ 𝑁𝐶 we have
𝑁 = ∫𝑇

0 𝑓𝑠𝑑𝑠 < ∞ then ∀𝜔 ∈ 𝑁𝐶

|𝑇1(𝜔)| ⩽ max
𝑗

|𝐼𝑡𝑗+1
− 𝐼𝑡𝑗

|
𝑛−1

∑
𝑗=0

| ∫
𝑡𝑗+1

𝑡𝑗

𝑓𝑠 𝑑𝑠|

⩽ max
𝑗

|𝐼𝑡𝑗+1
− 𝐼𝑡𝑗

|| ∫
𝑡

0
𝑓𝑠 𝑑𝑠| → 0

(6.3)

Hence 𝑇1 → 0 a.s. and in probability. Similarly for 𝑇2

|𝑇2(𝜔)| ⩽ 2 max
𝑗

|𝐼𝑡𝑗+1
− 𝐼𝑡𝑗

|| ∫
𝑡𝑗+1

𝑡𝑗

𝑓𝑠 𝑑𝑠|

⩽ 2 max
𝑗

|𝐼𝑡𝑗+1
− 𝐼𝑡𝑗

|| ∫
𝑡

0
𝑓𝑠 𝑑𝑠| → 0

(6.4)
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since 𝐼𝑡 is continuous. Hence 𝑇2 → 0 a.s. and in probability. Finally, 𝑇3 → ∫𝑡
0 𝑔2

𝑠 𝑑𝑠 in probability by 𝐿2

convergence of the construction of the stochastic integral.

4) Analogous to Point 3).

7


	Exercise 1. 
	Exercise 2. 
	Exercise 3. 
	Exercise 4. 
	Exercise 5. 
	Exercise 6. 

