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Exercise 1.
Consider a scalar standard Brownian motion (Wiener process) on [0, 1].

i) Write a Matlab code to simulate a discretized Brownian motion 𝑊(𝑡) on 𝑡𝑗 = 𝑗𝛥𝑡 (by simulating
the independent increments) with 𝛥𝑡 = 2−4, 2−6, 2−8, and compute the mean on all grid points over
20, 200, 2000 trajectories. Verify that E(𝑊(𝑡)) = 0.

ii) Compute the discretized stochastic process 𝑋(𝑡) = 𝑋0 exp((𝜆 − 1
2
𝜇2)𝑡 + 𝜇𝑊(𝑡)) on 𝑡𝑗 = 𝑗𝛥𝑡, for

𝜆 = 2, 𝜇 = 1, 𝑋0 = 1 with 𝛥𝑡 = 2−4, 2−6, 2−8, and compute the mean of 𝑋(𝑡) on all grid points over
20, 200, 2000 trajectories. Can you guess what E(𝑋(𝑡)) is?

Solution

1)

Figure 1: Discretized Brownian motion. The red and green lines are the empirical and exact averages,
respectively.
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2)

Figure 2: Discretized stochastic process. The red and green lines are the empirical and exact averages,
respectively.

Exercise 2.
(Brownian bridge) Let 𝑇 > 0 and consider the interval [0, 𝑇 ]. A Brownian bridge is a standard Gaussian

process (𝑍(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ) such that

Cov(𝑍(𝑡), 𝑍(𝑠)) = min{𝑠, 𝑡} − 𝑠𝑡
𝑇 .

Let (𝑊(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ) be a standard Brownian motion.

i) Show that 𝑍(𝑡) = 𝑊(𝑡) − 𝑡
𝑇

𝑊(𝑇 ) is a Brownian bridge.

In some applications it is useful to construct a modified Wiener process (𝑋(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ) for which all sample
paths satisfy 𝑋(0) = 𝑥 and 𝑋(𝑇 ) = 𝑦 for some 𝑥, 𝑦 ∈ R.

ii) Using the Brownian bridge, construct such a Gaussian process with

E[𝑋(𝑡)] = 𝑥 − 𝑡
𝑇(𝑥 − 𝑦) and Cov(𝑋(𝑡), 𝑋(𝑠)) = min{𝑠, 𝑡} − 𝑠𝑡

𝑇 . (2.1)

iii) Simulate the stochastic process (𝑋(𝑡), 0 ⩽ 𝑡 ⩽ 2) constructed in point 𝑖𝑖) with 𝑋(0) = 1 and 𝑋(2) = 2.
Use different step sizes 𝛥𝑡 = 2−4, 2−6, 2−8 and approximate E[𝑋(𝑡)] over 𝑀 = 20, 200, 2000 trajectories.

Solution
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i) It is clear that 𝑍 is a standard Gaussian process. Furthermore, for any 0 ⩽ 𝑠, 𝑡 ⩽ 𝑇 we have

E(𝑍(𝑡)𝑍(𝑠)) = E(𝑊(𝑡)𝑊(𝑠)) − 𝑡
𝑇E(𝑊(𝑇 )𝑊(𝑠)) − 𝑠

𝑇E(𝑊(𝑇 )𝑊(𝑡)) + 𝑠𝑡
𝑇 2E(𝑊(𝑇 )2)

= min{𝑠, 𝑡} − 𝑠𝑡
𝑇 .

ii) The desired Brownian bridge is given by 𝑋(𝑡) = 𝑥 + 𝑊(𝑡) − 𝑡
𝑇

(𝑥 + 𝑊(𝑇 ) − 𝑦). As 𝑊(𝑡) ∼ 𝑁(0, 𝑡), it is
clear that E(𝑍(𝑡)) = 𝑥 − 𝑡

𝑇
(𝑥 − 𝑦). By definition of covariance and applying the properties of Brownian

motion, we have

Cov(𝑍(𝑡), 𝑍(𝑠)) = E((𝑍(𝑡) − E(𝑍(𝑡)))(𝑍(𝑠) − E(𝑍(𝑠))))

= E((𝑊(𝑡) − 𝑡
𝑇𝑊(𝑇 ))(𝑊(𝑠) − 𝑠

𝑇𝑊(𝑇 ))) = min{𝑠, 𝑡} − 𝑠𝑡
𝑇 .

iii) The plots are given in Figure 3.

Figure 3: Brownian bridge. The red and green lines are the empirical and exact averages, respectively.

Exercise 3.
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For a given 𝑛 ⩾ 1, we approximate the Brownian motion as

𝑊𝑛(𝑡) =
2𝑛+1−1

∑
𝑘=0

𝑠𝑘(𝑡)𝜉𝑘,

where {𝑠𝑘}2𝑛+1−1
𝑘=0 are the Schauder functions defined in previous exercises and {𝜉𝑘}2𝑛+1−1

𝑘=0 are independent
standard Gaussian random variables 𝜉𝑘 ∼ 𝑁(0, 1). Furthermore, let 𝑃 = {0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 1} be the
uniform partition of [0, 1] with 𝛥𝑡 = 2−12.

i) For 𝑛 = 3, 4, … , 10, plot 𝑊𝑛 on the partition 𝑃 and observe numerically that the sequence

𝑉𝑛 =
𝑁

∑
𝑖=1

|𝑊𝑛(𝑡𝑖) − 𝑊𝑛(𝑡𝑖−1)|

diverges.

ii) Consider the series of the time derivative 𝐷𝑛 of 𝑊𝑛

𝐷𝑛(𝑡) = 𝑊𝑛(𝑡) =
2𝑛+1−1

∑
𝑘=0

ℎ𝑘(𝑡)𝜉𝑘,

where {ℎ𝑘}2𝑛+1−1
𝑘=0 are the Haar functions defined in previous exercises. For 𝑛 = 3, 4, … , 10, plot 𝐷𝑛 on

the partition 𝑃 and observe numerically that the series diverges.

Solution
The plots are given in Figure 6.

Figure 4: Quantities 𝑊𝑛, 𝑉𝑛 and 𝐷𝑛 for different values of 𝑛 = 3, 4, … , 10.

Exercise 4.
In some circumstances, we compute a discretized Brownian path {𝑡𝑖, 𝑊𝑖}

𝐿
𝑖=0 with 𝛥 = 𝑡𝑖+1 − 𝑡𝑖 and then

wish to refine the discretization; that is, to compute values for the path at one or more times in between the set
{𝑡𝑖}

𝐿
𝑖=0. To be specific, suppose we need a new value 𝑊𝑖+ 1

2
, to represent the path at time 𝑡𝑖+ 1

2
∶= 1

2
(𝑡𝑖 + 𝑡𝑖+1).

To be consistent, the new r.v. 𝑊(𝑡𝑖+ 1
2
) has to satisfy all the properties of Brownian motion.

1) Show that
𝑊(𝑡𝑖+ 1

2
) = 1

2(𝑊(𝑡𝑖) + 𝑊(𝑡𝑖+1)) + 𝑌𝑖+ 1
2
, where 𝑌𝑖+ 1

2
∼ 𝑁(0, 1

4𝛥𝑡) (4.1)

with 𝑌𝑖+ 1
2

independent of all other r.v. used to create the path, guarantees all the properties of a
Brownian motion.
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2) Generalize the formula (4.1) to the case where, given 𝑊(𝑡𝑖) and 𝑊(𝑡𝑖+1), a value is needed for 𝑊(𝑡𝑖 + 𝛼𝛥𝑡)
for some 𝛼 ∈ (0, 1).

3) Simulate a Brownian motion 𝑊𝑡, where 𝑡 ∈ [0, 4] for a mesh of 𝑁 = 101 points, hence ℎ = 4 ⋅ 10−2.
Refine 𝑊 with 201 points for 𝛼 = 1

4
, 1

2
, 3

4
using the formula point 2) and for each value of 𝛼 plot 𝑊 and

its refinement.

Solution

1) An obvious first try is to take the average of the neighboring values; so 𝑊(𝑡𝑖+ 1
2
) = 1

2
(𝑊(𝑡𝑖) + 𝑊(𝑡𝑖+1)).

This leads to

𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖+ 1
2
) = 1

2(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)) ∼ 1
2𝑁(0, 𝛥𝑡) ∼ 𝑁(0, 1

4𝛥𝑡)

and similarly, 𝑊(𝑡𝑖+ 1
2
) − 𝑊(𝑡𝑖) ∼ 𝑁(0, 1

4
𝛥𝑡), whereas in order to preserve second property on the

refined mesh we require these increments to be 𝑁(0, 1
2
𝛥𝑡). The normal distribution is preserved under

addition, and that variances add. This suggests taking

𝑊(𝑡𝑖+ 1
2
) = 1

2(𝑊(𝑡𝑖) + 𝑊(𝑡𝑖+1)) + 𝑌𝑖+ 1
2
, where 𝑌𝑖+ 1

2
∼ 𝑁(0, 1

4𝛥𝑡)

with 𝑌𝑖+ 1
2

independent of all other random variables used to create the path. This gives

𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖+ 1
2
) ∼ 𝑁(0, 1

2𝛥𝑡) and 𝑊(𝑡𝑖+ 1
2
) − 𝑊(𝑡𝑖) ∼ 𝑁(0, 1

2𝛥𝑡)

as required for the second properties. To respect the independence of Brownian increments, we must
ensure that the new increments 𝑊(𝑡𝑖+1)− 𝑊(𝑡𝑖+ 1

2
) and 𝑊(𝑡𝑖+ 1

2
) − 𝑊(𝑡𝑖) are independent. Since both

are normally distributed, this reduces to showing that the expected value of their product is the product
of their expected values. Now, E[(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖+ 1

2
))(𝑊(𝑡𝑖+ 1

2
) − 𝑊(𝑡𝑖))] has the form

E[(
𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)

2 − 𝑌𝑖+ 1
2
)(

𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)
2 + 𝑌𝑖+ 1

2
)]

This simplifies to

E[(
𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)

2 )
2

− 𝑌 2
𝑖+ 1

2

] = E[(
𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)

2 )
2

] − E[𝑌 2
𝑖+ 1

2

]

= 𝛥𝑡
4 − 𝛥𝑡

4
= 0

as required. It follows that generates a 𝑊(𝑡𝑖+ 1
2
) that preserves the three defining properties of Brownian

motion.
Computationally, this implies that setting

𝑊𝑖+ 1
2

= 1
2(𝑊𝑖 + 𝑊𝑖+1) + 1

2
√

𝛥𝑡𝜉𝑖, where 𝜉𝑖 is an independent 𝑁(0, 1) sample,

allows us to ”fill in” a discretized Brownian path from resolution 𝛥𝑡 to resolution 1
2
𝛥𝑡.
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2) We start by putting
𝑊(𝑡𝑖 + 𝛼𝛥𝑡) = (1 − 𝛼)𝑊(𝑡𝑖) + 𝛼𝑊(𝑡𝑖+1)

and we compute 𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖 + 𝛼𝛥𝑡). We have

𝑊(𝑡𝑖 + 𝛼𝛥𝑡) = (1 − 𝛼)𝑊(𝑡𝑖) + 𝛼𝑊(𝑡𝑖+1) + (1 − 𝛼)𝑊(𝑡𝑖+1) − (1 − 𝛼)𝑊(𝑡𝑖+1)
= (1 − 𝛼)(𝑊(𝑡𝑖) − 𝑊(𝑡𝑖+1)) + 𝑊(𝑡𝑖+1)

Then
𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) = (1 − 𝛼)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)) ∼ 𝒩(0, (1 − 𝛼)2𝛥𝑡)

Since, by hypothesis of the Brownian motion 𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) has to be normally distributed
with variance (1 − 𝛼)𝛥𝑡, we have to find a normal random variable 𝑌𝑖+𝑎 ∼ 𝒩(0, 𝑘(𝛼)𝛥𝑡) such that

(1 − 𝛼)2 + 𝑘(𝛼) = 1 − 𝛼

that is, 𝑘(𝛼) = 𝛼 − 𝛼2. Then, we put

𝑊(𝑡𝑖 + 𝛼𝛥𝑡) = (1 − 𝛼)𝑊(𝑡𝑖) + 𝛼𝑊(𝑡𝑖+1) + 𝑌𝑖+𝑎

where 𝑌𝑖+𝑎 is an independent random variable normally distributed with zero mean and variance 𝛼 − 𝛼2.
We have to verify the assumptions of the Brownian motion for 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) as in (10).
We have

𝑊(𝑡𝑖 + 1) − 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) = (1 − 𝛼)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)) − 𝑌𝑖+𝛼

that is,
𝑊(𝑡𝑖 + 1) − 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) ∼ 𝒩(0, (1 − 𝛼)𝛥𝑡)

and
𝑊(𝑡𝑖 + 𝛼𝛥𝑡) − 𝑊(𝑡𝑖) = 𝛼(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)) + 𝑌𝑖+𝑎

that is,
𝑊(𝑡𝑖 + 𝛼𝛥𝑡) − 𝑊(𝑡𝑖) ∼ 𝒩(0, 𝛼𝛥𝑡)

It remains to show that 𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) and 𝑊(𝑡𝑖 + 𝛼𝛥𝑡) − 𝑊(𝑡𝑖) are independent with
𝑊(𝑡𝑖 + 𝛼𝛥𝑡) as in (10). We have that

E[(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖+𝛼)(𝑊(𝑡𝑖 + 𝛼) − 𝑊(𝑡𝑖))]

assumes the form

E[((1 − 𝛼)(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)) − 𝑌𝑖+𝑎)(𝛼(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)) + 𝑌𝑖+𝑎)]

Due to the independence of 𝑌𝑖+𝑎, the above expression simplifies to

E[(1 − 𝛼)𝛼(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))
2 − (𝑌𝑖+𝛼)2] = (1 − 𝛼)𝛼E[(𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖))

2]

− E[(𝑌𝑖+𝛼)2]

= (1 − 𝛼)𝛼𝛥𝑡 − (𝛼 − 𝛼2)𝛥𝑡 = 0

Therefore the two random variables are independent as required from the properties of Brownian motion.

Exercise 5.
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Figure 5: Brownian motion and its refinement for 𝛼 = 0.25, 0.5, 0.75.

Let {𝑊(𝑡)}𝑡⩾0 be a Brownian motion with respect to a filtration {ℱ𝑡}𝑡⩾0. Consider the quantity

𝐼(𝑃 , 𝜆) =
𝑚

∑
𝑗=1

𝑊(𝑡𝜆
𝑗 )(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1)), (5.1)

where 𝑃 = {0 = 𝑡0 < 𝑡1 < … < 𝑡𝑚 = 𝑡} is a partition of [0, 𝑡] of size 𝛥, i.e., 𝑡𝑗 = 𝑗𝛥 for 𝑗 = 0, … , 𝑚, and
𝑡𝜆
𝑗 = 𝑡𝑗−1 + 𝜆(𝑡𝑗 − 𝑡𝑗−1) with 𝜆 ∈ [0, 1] for 𝑗 = 1, … , 𝑚 are intermediate points. Define the quantity

𝐼𝜆(𝑡) = 1
2𝑊(𝑡)2 + (𝜆 − 1

2)𝑡.

1) Show that 𝐼(𝑃 , 𝜆) → 𝐼𝜆(𝑡) in L2 as 𝛥 → 0.

2) Show that 𝐼𝜆(𝑡) is a martingale with respect to the natural filtration if and only if 𝜆 = 0.

Solution
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1) One can rewrite 𝐼(𝑃 , 𝜆) as

𝐼(𝑃 , 𝜆) =
𝑚

∑
𝑗=1

𝑊(𝑡𝜆
𝑗 )(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))

=
𝑊(𝑡)2

2 − 1
2

𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
T1

+
𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝜆
𝑗 ))2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
T2

+
𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝜆
𝑗 ))(𝑊(𝑡𝜆

𝑗 ) − 𝑊(𝑡𝑗−1))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T3

(5.2)

We start proving that

lim
𝛥→0

𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2 = 𝑡, in L2.

Indeed, one has

(
𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2 − 𝑡) =
𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2 − (𝑡𝑗 − 𝑡𝑗−1),

and thus, writing for the sake of notation 𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1) = 𝛥𝑊𝑗, it follows that

E[(
𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2 − 𝑡)] =
𝑚

∑
𝑘=1

𝑚

∑
𝑗=1

E[((𝑊(𝑡𝑘) − 𝑊(𝑡𝑘−1))2 − (𝑡𝑘 − 𝑡𝑘−1))((𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2 − (𝑡𝑗 − 𝑡𝑗−1))]

=
𝑚

∑
𝑗=1,𝑘=𝑗

E[((𝑊(𝑡𝑘) − 𝑊(𝑡𝑘−1))2 − (𝑡𝑘 − 𝑡𝑘−1))((𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1))2 − (𝑡𝑗 − 𝑡𝑗−1))]

=
𝑚

∑
𝑗=1

E[(𝛥𝑊𝑗)4 − 2(𝛥𝑊𝑗)2(𝑡𝑗 − 𝑡𝑗−1) + (𝑡𝑗 − 𝑡𝑗−1)2]

=
𝑚

∑
𝑗=1

E
⎡
⎢
⎢
⎢
⎣

⎛⎜⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜⎜
⎝

𝛥𝑊𝑗

√𝑡𝑗 − 𝑡𝑗−1⏟⏟⏟⏟⏟
∶=𝑌𝑗∼𝒩(0,1)

⎞⎟⎟⎟⎟⎟⎟
⎠

2

− 1
⎞⎟⎟⎟⎟⎟⎟
⎠

2

⎤
⎥
⎥
⎥
⎦

(𝑡𝑗 − 𝑡𝑗−1)2

=
𝑚

∑
𝑗=1

(E[𝑌 4
𝑗 ] − 2E[𝑌 2

𝑗 ] + 1)(𝑡𝑗 − 𝑡𝑗−1)2

=
𝑚

∑
𝑗=1

(3 − 2 + 1)(𝑡𝑗 − 𝑡𝑗−1)2 ⩽ 2𝛥𝑇 → 0, as 𝛥 → 0,

(5.3)
using in the second line the independence of increments. Therefore, we have that T1 → 𝑡 and
T2 → ∑𝑚

𝑗=1[𝜆(𝑡𝑗 − 𝑡𝑗−1) + 𝑡𝑗−1] − 𝑡𝑗−1 → 𝜆𝑡 in L2 as 𝛥 → 0. For T3, defining 𝛥𝜆𝑊𝑗 = (𝑊(𝑡𝑗) −
𝑊(𝑡𝜆

𝑗 ))(𝑊(𝑡𝜆
𝑗 ) − 𝑊(𝑡𝑗−1)) and using the properties of Brownian motion we have that

E[T3] = E[
𝑚

∑
𝑗=1

(𝑊(𝑡𝑗) − 𝑊(𝑡𝜆
𝑗 ))(𝑊(𝑡𝜆

𝑗 ) − 𝑊(𝑡𝑗−1)) + 2 ∑
𝑗>𝑘

𝛥𝜆𝑊𝑗𝛥𝜆𝑊𝑘]

=
𝑚

∑
𝑗=1

E[(𝑊(𝑡𝑗) − 𝑊(𝑡𝜆
𝑗 ))2]E[(𝑊(𝑡𝜆

𝑗 ) − 𝑊(𝑡𝑗−1))2]

=
𝑚

∑
𝑗=1

(𝑡𝑗 − 𝑡𝜆
𝑗 )(𝑡𝜆

𝑗 − 𝑡𝑗−1)2

= 𝜆(1 − 𝜆)
𝑚

∑
𝑗=1

(𝑡𝑗 − 𝑡𝑗−1)2 ⩽ 𝜆(1 − 𝜆)
𝑚

∑
𝑗=1

(𝑡𝑗 − 𝑡𝑗−1)𝛥 → 0, as 𝛥 → 0.

(5.4)
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Putting all together, we get the desired result.

2) First, by the triangle inequality we have

E(|𝐼𝜆(𝑡)|) ⩽ 1
2
E(𝑊(𝑡)2) + ∣𝜆 − 1

2
∣𝑡 ⩽ (1 + 𝜆)𝑡 < ∞,

which shows that 𝐼𝜆(𝑡) is integrable for any 𝜆 ∈ [0, 1]. By definition, 𝐼𝜆(𝑡) is a martingale if and only if
E(𝐼𝜆(𝑡)|ℱ𝑠) = 𝐼𝜆(𝑠) a.s. for all 0 ⩽ 𝑠 ⩽ 𝑡. Let 0 ⩽ 𝑠 ⩽ 𝑡 and notice that

E(𝐼𝜆(𝑡)|ℱ𝑠) = 1
2
E(𝑊(𝑡)2|ℱ𝑠) + (𝜆 − 1

2
)𝑡.

We rewrite the first term in the right-hand side as

E(𝑊(𝑡)2|ℱ𝑠) = E((𝑊(𝑡) − 𝑊(𝑠))2∣ℱ𝑠) + 2E(𝑊(𝑠)(𝑊(𝑡) − 𝑊(𝑠))∣ℱ𝑠) + E(𝑊(𝑠)2∣ℱ𝑠).

As 𝑊(𝑡) − 𝑊(𝑠) is independent of ℱ𝑠 and 𝑊(𝑠) is ℱ𝑠-measurable, we have almost surely

E(𝑊(𝑡)2|ℱ𝑠) = E((𝑊(𝑡) − 𝑊(𝑠))2) + 2𝑊(𝑠)E(𝑊(𝑡) − 𝑊(𝑠)) + 𝑊(𝑠)2 = 𝑡 − 𝑠 + 𝑊(𝑠)2.

Therefore, we obtain

E(𝐼𝜆(𝑡)|ℱ𝑠) = 𝑊(𝑠)2

2
+ 1

2
(𝑡 − 𝑠) + (𝜆 − 1

2
)𝑡 = 𝑊(𝑠)2

2
+ (𝜆 − 1

2
)𝑠 + 𝜆(𝑡 − 𝑠) = 𝐼𝜆(𝑠) + 𝜆(𝑡 − 𝑠),

and we conclude that 𝐼𝜆(𝑡) is a martingale if and only if 𝜆 = 0.

Exercise 6.
Consider the Riemann sum

𝐼(𝑃 , 𝜆) =
𝑚

∑
𝑗=1

𝑊(𝑡𝜆
𝑗 )(𝑊(𝑡𝑗) − 𝑊(𝑡𝑗−1)), (6.1)

and define the quantity
𝐿(𝜆, 𝑡) = 𝐼(𝑃 , 𝜆) − 1

2𝑊(𝑡)2.

From the theory (see previous exercise) we know that 𝐿(𝜆, 𝑡) converges to (𝜆 − 1
2
)𝑡 in L2(𝛺). For 𝑡 = 1, 2, 3

and 𝜆 = 0, 1/4, 1/2, 3/4, 1 approximate lim𝛥→0 𝐿(𝜆, 𝑡) and verify the theoretical result. Choose 𝛥 = 2−8 and
use 𝑀 = 1000 sample paths.

Solution
The plot is given in Figure 6.
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Figure 6: Approximation of lim𝛥→0 𝐿(𝜆, 𝑡) in Exercise 5 for different values of 𝜆 and 𝑡.
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