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Exercise 1.

Let (Q, F,P, <5Ft>t>0) be a stochastic basis. Consider two stochastic processes X,Y : 2 — R”, with T

an interval of R* or the whole R", both adapted to (7). Show that if X,Y are a modification of each
other and they are a.s. continuous, then they are indistinguishable

Solution

As the paths of the two processes are a.s. continuous except eventually for a negligible event, if they
coincide at the times of a dense subset D C T, they necessarily coincide on the whole T. Let D = {¢;,t5,...}
be a sequence of times which is dense in T'( e.g. TN Q ). Then

{X, =Y, for every t} = ﬂ{Xt =Y.} = ﬂ {Xti = Yt}
teT t,eD

As P(Xti = Yt1) =1 for every i, it follows that

P(Xy, #Y,,) #0
= P(U{Xti + Yt}) =0 (countable union of zero probability events)

d P( ﬂ {Xti = Y;7}) =1 _P(U{Xti 7& Y;Z}) =1

t,€D

so that also P(X; =Y, for every t) = 1 and the two processes are indistinguishable.

Exercise 2.

Let (X(¢),0<¢<T)and (Y(¢),0 <t <T) be two stochastic processes. By providing counterexamples,
show that:

) PXH)=Yt)VteQn[0.T])=1 == PX({t)=Y()Vtel0,T]) =
i) PX(t)=Y(t) =1Vte[0,T] == PX@)=Y()Vtel0,T])=1
(In view of the previous exercise, X,Y cannot be both a.s. continuous).

Solution

i) Consider X (t) a stochastic process defined on [0, 7] and define

X te0,T)NQ,
Yie) = {X(t) +1 tel0,7]\Q.

Then we have P(X(t) =Y (t) Vt € QN [0,7]) = 1 but A(X(t) =Y (¢) Vt € [0,T]) = 0.

it) Consider a uniform random variable U ~ U(0,7) on [0,7]. Then, define X(¢,w) = 0 for all ¢ € [0, 7]

and w € 2 and Y (¢,w) as
1 ift=
RS
0 otherwise.



Then we have for all ¢ € [0,T]
P(X(t) =Y(t) = P(Y(t) = 0) = P(U # t) =

hence the left hand side of the implication is verified. Nonetheless, for all w € {2 the paths ¢ = X (¢, w)
and t = Y (¢,w) are not equal as

YUw),w)=1#0=XU(w),w),
hence P(X(t) =Y (t) vVt € [0,T]) = 0.

Exercise 3.

Let B be a real Brownian motion and © = {tg, ..., ¢,,} with 0 < s =t, < t;--- < t,, =t be a partition of
the interval [s,t], with |7| = maXocpem_1|tri1 — txl-

1) Show that
m—1 )
Vﬂ? = Z ‘Bthrl - Btk‘
k=0
satisfies
lim V2 =t—s in L2

|| =0+

2) Show that | 1‘1111 V1 =00 as. Vt > s, ie. the paths of a Brownian motion do not have finite variation in
7|—0

any time interval a.s.

Solution

1) We have ZZ:Ol(tkH —tp) = —8)+ (to —ty) + -+ (t —t,,_1) =1 — s s0 we can write

,_.

m—

2
(t—s) [ By, ., — Btk.) — (tpy1r — te) |-
k=0

We must prove that E[(VW2 = (t—s))2] — 0 as |7| — 0. Note that the random variable v, =

(Btk+1 — Btk)2— (tyr1 —tr), K =0,...,m — 1 are independent (the increments of a Brownian motion
over disjoint intervals are independent) and centered; therefore, if h #+ k we have

E([(Bth+1 B Bth>2 (e — th)} {(Btk+1 _ Btk)Z — (tppr — tk)D =0,

so that

E[(VZ—(t—s)"] =E (m_l[@k,l — B,,)" = (tr — )] m_1[<Bth,1 — B;,)" = (th — m})

k=0 h=0
m—1 m—1 2
2 (Bi,,, — Bi,)
= B ([(Bis = B~ (i = 0] ) = 2 (b — B[ [t
k=0 k=0 k+1 k

(3.1)

By, ,—B:
But for every k the r.v. ——% is N(0, 1)-distributed and the quantities
Vigr1—te



are finite and do not depend on k (¢ = 2, if you really want to compute it...). Therefore, as || — 07,

m—1 m—1
2
B[(V2=(t—9)2] = ¢ 3 (s — tn)® <clnl S ltas — til = cll(t — 5) >0,
k=0 k=0
which yields the thesis.
2) Observe that
m—1 m—1
2
VWQ = Z‘Btk+l - Btk‘ S max ‘Btul - Bti’ Z|Btk+1 - Btk’
=0 o<i<m—1 o

As the paths are a.s. continuous, max0<i<m_1|BtM . Bti’ — 0 as || — 0T and therefore if the paths
had finite variation on [s,¢] for w in some event A of positive probability, then on A we would have

m—1

lim Y [B,  —B,|<+
k=0

7|0+

and therefore, taking the limit, we would have lim|.|_,o- V2(w) =0 on A, in contradiction with point 1).

Exercise 4.

Consider a Brownian motion B on a filtered probability space (Q, F, P, (F)) . Show that

t>O>

1) for every 0 < s < t the r.v. B, — B, is independent of B,, Yu < s;
2) B is a Gaussian process.

Hint. To show that a stochastic processes {X;},ci0,00) s @ Gaussian it is enough to show that for any
ty,tgy ..., t,, € RT and any ay,as, ..., a,, € R the random variable Z = Zzl a; X, is Gaussian.

Solution

1) From the definition of Brownian motion we know that B, is &, measurable, hence &, measurable
since F,, C F,. This implies that o(B,) C F,. Again, by definition of Brownian motion B, — By is
independent of &, hence it is also independent of o(B,,), for all u < s, which is equivalent to say that
B, — B, id independent of B, for all u < s.

2) One has to prove that the joint distributions of B, , ..., B; is Gaussian. The proof follows by induction.
This is obvious if m = 1, with s = 0 one has B, ~ N(0,t) via definition of Brownian motion.

Let us assume that Zzl ;B , for any ay,...,a,, € R and any sy,s5,-+,5,, € R", is Gaussian and

consider Y = Z:’;l a;B;, with w.lo.g. 0 <ty <ty <+ <lp,yq. Then, we can write

Y=oB +-+ a1 By

m+1

= [alBtl + o+ (a, + am+1)Btm] T4 (Btm+1 - Btm>
v

By induction assumption Vis Gaussian and By ., — B, is Gaussian by definition and independent of v
via point 1). This yields the thesis.

Exercise 5.



The family of Haar functions {hy }1>o is defined for 0 <t <1 as

I ifo<t<1/2,
ho(t) =1, hy(t) = { —1 if1/2<t </1,

and for 2" < k < 2" with n =1, 2, ... as

on/2 i ’“;2 <t BEE
hi(t) =4 —2n/2 jf k72;‘:1/2 <t< kij:H, n = [log, k|
0 otherwise.

i) Show that {hy} x>0 is orthonormal in L%(0,1).

i) Show that {h;},>0 is complete in L2(0,1), i.e., f = Ezoz()(f,hk)hk in L2(0,1) for any f € L2(0,1).

Hint. First prove that if (g, h;) = 0 for all £ > 0 then g = 0 a.s. by showing that j:g = 0 for all
0<s<tg 1.

Solution

(See Evans chapter 3 for more details.)

i) First, for any k& > 0 it holds (hy, hy,) = 27™(2%/2)2 = 1. Then, note that if 2" < k <1 < 2" foran > 1,
the support of h;, and h; are disjoint and hence (hy, h;) = 0. Finally, if 271 < k < 2L L 272 L [ < 22 FL
for 1 < ny < ng, then the support of h; is included in the half-support of hy, hence hyh, = +2"2/2h,,
and hence (hy, h;) = 0.

it) Assume that (f,h;) = 0 for all k > 0. First, it holds (f, hg) = Ll f = 0. Then, we have (f,h;) =

j(;l/z f— f1i2 f =0 and that implies fol/2 f= fliQ f which due to the previous step gives 2 j(;l/z f= fol f=0

1/2

and we conclude that fo f= f; ) f=0. Continuing with the same reasoning we can show that for any

(k+1)/2m+1
n>1and for all 0 < k< 2"+ 1 we have fk/2n+1

we deduce that for any 0 < ¢,s < 1 it holds fst f =0, which implies that f = 0 a.e. in [0, 1]. Now let
f € L?(0,1). Note that g = f — Z:io(f, hy)hy, satisfies (g, h;) = 0 for all j > 0, and therefore g = 0 a.e.
and f =377 (f, hy)hy, in L2(0,1).

f=0. Hence, by density of the extrema in [0, 1]

Exercise 6.

The family of Schauder functions {s} ¢ is defined for 0 <t <1 as s,(t) = (x[0,¢), hk), Where {hy}jo are
the Haar functions and (-, -) is the inner product in L?(0,1). Then let W (t) = Z;io Epsp(t), where {&g brso 18
a sequence of independent standard Gaussian random variables &, ~ N(0,1).

i) Show that Y~ s, (r)sy,(t) = min{r, ¢} for all 0 <7, ¢ < 1.

i1) Show that there exists a constant C' > 0 such that for all £ > 2 it holds

P& > 4+/logk) < Ok,

and deduce that almost surely there exists a positive integer k such that for all & > k it holds
€] < 44/logk.
Hint. Apply Borel-Cantelli lemma.

iit) Prove that the series W (t) converges uniformly for ¢ € [0, 1].
Hint. You can follow these steps where C' > 0 is a positive constant.



n+1
a) Show that almost surely for n big enough maxgncggn |§| < C274 .

n+2

sp(®)] <272

2n+171
k=27

b) Show that >

n+3

¢) Show that for m big enough 7.7, |&lls,(t)] < C Y>> 27 7o,

Solution

0

i)

ii)

For 0 < s,t < 1, using Exercise 5 we have

Zsk(t>5k(s) = Z(X[o,q, hie)(X(0,s) Poie) = <X[O,t]7Z<X[O,s]a hi)hi) = (X[0.4)> X[0,])
k=0 k=0 k=0
= min{s,t}.

For any x > 0 and k > 2 we have

2 oo 2 2 z2 o] 2 2 22 00 .2
) kT
27 Jy 2 - 21T b
$2

Hence, setting = = 4+/logk and C = % fooo e 4, we obtain

P(|&,| > 4y/logk) < Ce~tlosk L Ok,

Since Y. k™* < oo, Borel-Cantelli lemma implies that P(|¢,] > 4y/logki.0.) = 0. Consequently,
P(]&;| < 44/logk eventually) = 1 and almost surely for any sufficiently large k it holds || < 44/logk.

First, note that /logk < v2k'/* (for all z, > 0 we have alogz = log(z®) < z®), hence from the
previous point we have

’n_+1

max  |&] < max4v2kY/4 <0275,
2nLk<2ntl k

where C = 4V/2. Furthermore, note that for any 2" < k < 2"*! with n > 2 and for all 0 < ¢ < 1,

|5, (t)| < 27("*2)/2 (hat functions) and therefore

on+l_q
_mi2
o lset) <27,
k=2n
as the hat functions have non-overlapping supports. Consequently, for any 0 < ¢ < 1, we bound the
remainder by

n+l__
o 2 1 > n+1 n+2 > n+3

Slalls®l=>" Y Jallsiml<cd 27m 2 <0y 27w

k=2m n=m k=2n n=m n=m

Since the geometric series > (271/4)™ converges, the remainder is smaller than e for sufficiently large m.
As this holds for all 0 <t < 1, the series converges uniformly on [0, 1].

Exercise 7.

The family of Schauder functions {s},~¢ is defined for 0 <t <1 as s,(t) = (x[0,¢), hk), Where {hy}jo are
the Haar functions and (-, -) is the inner product in L?(0,1). Then let

Wi(t) = ngsk(t), (7.1)
k=0



where {{ }1>0 is a sequence of independent standard Gaussian random variables &, ~ N(0,1).
Show that W (t) is actually a Brownian motion. Equation (7.1) is the Lévy-Ciesielski construction of the
Brownian motion.

Solution

To prove W(-) is a Brownian motion, we first note that clearly W (0) = 0 a.s. We assert as well that
W(t) —W(s) is N(0,t — s) for all 0 < s <t < 1. To prove this, let us compute

E<ei)\(W(t)7W(s))> _ E(e” Yoo gk(5k<t)75k<5>>>

= H E(e?ex(s®=sk(s))) by independence
k=0

,A_ si(s5))?
= H 2 since &, is N(0,1)
k=0 .
2
:efzkosk su(5))? (7.2)
_ 2 SRt 28 (B)si(s) +si(s)
—L(t—23+s) .
=e 2 by Exercise 6
2
= 67%@75)
By uniqueness of characteristic functions, the increment W (t) — W (s) is N(0,t — s), as asserted. Next we
claim for all m = 1,2,... and for all 0 = t; < t; < --- < t,, < 1, that
- ™o A3
E(ezZHAj(W(n tja ) — He 5 (ti=t; (7.3)
Jj=1
Once this is proved, we will know from uniqueness of characteristic functions that
EW(t,) e Wt Wit ) (15 o5 Tm) = Fwie (@1) - P, -wiz,, ) (2m)
for all x4, ...x,, € R. This proves that
wWi(ty), ..., W(t,,) — W(t,,—1) are independent.
Thus (7.3) will establish the thesis. Now in the case m = 2, we have
E(ei[/\lW(t1)+>\2(W(t2>—W(t1))]) = E(ei[(/\l—/\z)w(tl)+)\2W(t2)])
— E(ei(/\l—kz)zzc;g Ersr(t)+ida 100, Eksk(tz))
o0
= H E(eiék[(/\1*>\2)Sk(t1)+)\28k(t2)])
k=0
_ H o5 (M A2)silt) FAgsi(t2)? (7.4)
k=0

1
e 3 EZZOOW*>\2)23i(t1)+2(>\1*)\2)>\25k(t1>Sk(t2>+>\§5i(t2)

-z [()\1—)\2)2151""2@1—>\2)A2t1+)\%t2}

=e 2 by Ex. 6

[A2t1+)\ (ta—t1)]

This is (7.3) for m = 2, and the general case follows similarly.
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