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Exercise 1.
Let (𝛺, ℱ, 𝑃 , (ℱ𝑡)𝑡⩾0

) be a stochastic basis. Consider two stochastic processes 𝑋, 𝑌 ∶ 𝛺 → R𝑇, with 𝑇
an interval of R+ or the whole R+, both adapted to (ℱ𝑡)𝑡⩾0. Show that if 𝑋, 𝑌 are a modification of each
other and they are a.s. continuous, then they are indistinguishable

Solution
As the paths of the two processes are a.s. continuous except eventually for a negligible event, if they

coincide at the times of a dense subset 𝐷 ⊂ 𝑇, they necessarily coincide on the whole 𝑇. Let 𝐷 = {𝑡1, 𝑡2, …}
be a sequence of times which is dense in 𝑇 ( e.g. 𝑇 ∩ Q ). Then

{𝑋𝑡 = 𝑌𝑡 for every 𝑡} = ⋂
𝑡∈𝑇

{𝑋𝑡 = 𝑌𝑡} = ⋂
𝑡𝑖∈𝐷

{𝑋𝑡𝑖
= 𝑌𝑡𝑖

}

As P(𝑋𝑡𝑖
= 𝑌𝑡𝑖

) = 1 for every 𝑖, it follows that

P(𝑋𝑡𝑖
≠ 𝑌𝑡𝑖

) ≠ 0
⟹ P(∪{𝑋𝑡𝑖

≠ 𝑌𝑡𝑖
}) = 0 (countable union of zero probability events)

⟹ P( ⋂
𝑡𝑖∈𝐷

{𝑋𝑡𝑖
= 𝑌𝑡𝑖

}) = 1 − P(∪{𝑋𝑡𝑖
≠ 𝑌𝑡𝑖

}) = 1.
(1.1)

so that also P(𝑋𝑡 = 𝑌𝑡 for every 𝑡) = 1 and the two processes are indistinguishable.

Exercise 2.
Let (𝑋(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ) and (𝑌 (𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ) be two stochastic processes. By providing counterexamples,

show that:

i) 𝑃(𝑋(𝑡) = 𝑌 (𝑡) ∀ 𝑡 ∈ Q ∩ [0, 𝑇 ]) = 1 ⟹̸ 𝑃(𝑋(𝑡) = 𝑌 (𝑡) ∀ 𝑡 ∈ [0, 𝑇 ]) = 1.

ii) 𝑃(𝑋(𝑡) = 𝑌 (𝑡)) = 1 ∀ 𝑡 ∈ [0, 𝑇 ] ⟹̸ 𝑃(𝑋(𝑡) = 𝑌 (𝑡) ∀ 𝑡 ∈ [0, 𝑇 ]) = 1.

(In view of the previous exercise, 𝑋, 𝑌 cannot be both a.s. continuous).

Solution

i) Consider 𝑋(𝑡) a stochastic process defined on [0, 𝑇 ] and define

𝑌 (𝑡) = {𝑋(𝑡) 𝑡 ∈ [0, 𝑇 ] ∩ Q,
𝑋(𝑡) + 1 𝑡 ∈ [0, 𝑇 ] ⧵Q.

Then we have 𝑃(𝑋(𝑡) = 𝑌 (𝑡) ∀𝑡 ∈ Q ∩ [0, 𝑇 ]) = 1 but 𝑃(𝑋(𝑡) = 𝑌 (𝑡) ∀𝑡 ∈ [0, 𝑇 ]) = 0.

ii) Consider a uniform random variable 𝑈 ∼ 𝒰(0, 𝑇 ) on [0, 𝑇 ]. Then, define 𝑋(𝑡, 𝜔) = 0 for all 𝑡 ∈ [0, 𝑇 ]
and 𝜔 ∈ 𝛺 and 𝑌 (𝑡, 𝜔) as

𝑌 (𝑡, 𝜔) = {1 if 𝑡 = 𝑈(𝜔),
0 otherwise.
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Then we have for all 𝑡 ∈ [0, 𝑇 ]

𝑃 (𝑋(𝑡) = 𝑌 (𝑡)) = 𝑃(𝑌 (𝑡) = 0) = 𝑃(𝑈 ≠ 𝑡) = 1,

hence the left hand side of the implication is verified. Nonetheless, for all 𝜔 ∈ 𝛺 the paths 𝑡 ↦ 𝑋(𝑡, 𝜔)
and 𝑡 ↦ 𝑌 (𝑡, 𝜔) are not equal as

𝑌 (𝑈(𝜔), 𝜔) = 1 ≠ 0 = 𝑋(𝑈(𝜔), 𝜔),

hence 𝑃(𝑋(𝑡) = 𝑌 (𝑡) ∀𝑡 ∈ [0, 𝑇 ]) = 0.

Exercise 3.
Let 𝐵 be a real Brownian motion and 𝜋 = {𝑡0, … , 𝑡𝑚} with 0 ⩽ 𝑠 = 𝑡0 < 𝑡1 ⋯ < 𝑡𝑚 = 𝑡 be a partition of

the interval [𝑠, 𝑡], with |𝜋| = max0⩽𝑘⩽𝑚−1|𝑡𝑘+1 − 𝑡𝑘|.

1) Show that

𝑉 2
𝜋 =

𝑚−1

∑
𝑘=0

∣𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

∣2

satisfies
lim

|𝜋|→0+
𝑉 2

𝜋 = 𝑡 − 𝑠 in 𝐿2.

2) Show that lim
|𝜋|→0+

𝑉 1
𝜋 = ∞ a.s. ∀𝑡 > 𝑠, i.e. the paths of a Brownian motion do not have finite variation in

any time interval a.s.

Solution

1) We have ∑𝑚−1
𝑘=0 (𝑡𝑘+1 − 𝑡𝑘) = (𝑡1 − 𝑠) + (𝑡2 − 𝑡1) + ⋯ + (𝑡 − 𝑡𝑚−1) = 𝑡 − 𝑠 so we can write

𝑉 2
𝜋 − (𝑡 − 𝑠) =

𝑚−1

∑
𝑘=0

[(𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

)2 − (𝑡𝑘+1 − 𝑡𝑘)].

We must prove that E[(𝑉 2
𝜋 − (𝑡 − 𝑠))2] → 0 as |𝜋| → 0. Note that the random variable 𝑣𝑘 =

(𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

)2− (𝑡𝑘+1 − 𝑡𝑘), 𝑘 = 0, … , 𝑚 − 1 are independent (the increments of a Brownian motion
over disjoint intervals are independent) and centered; therefore, if ℎ ≠ 𝑘 we have

E([(𝐵𝑡ℎ+1 − 𝐵𝑡ℎ
)2 − (𝑡ℎ+1 − 𝑡ℎ)][(𝐵𝑡𝑘+1

− 𝐵𝑡𝑘
)2 − (𝑡𝑘+1 − 𝑡𝑘)]) = 0,

so that

E[(𝑉 2
𝜋 − (𝑡 − 𝑠))2] = E(

𝑚−1

∑
𝑘=0

[(𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

)2 − (𝑡𝑘+1 − 𝑡𝑘)] ×
𝑚−1

∑
ℎ=0

[(𝐵𝑡ℎ+1
− 𝐵𝑡ℎ

)2 − (𝑡ℎ+1 − 𝑡ℎ)])

=
𝑚−1

∑
𝑘=0

E([(𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

)2 − (𝑡𝑘+1 − 𝑡𝑘)]
2
) =

𝑚−1

∑
𝑘=0

(𝑡𝑘+1 − 𝑡𝑘)2E⎡
⎢
⎣

⎛⎜
⎝

(𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

)2

𝑡𝑘+1 − 𝑡𝑘
− 1⎞⎟

⎠

2

⎤
⎥
⎦

.

(3.1)

But for every 𝑘 the r.v.
𝐵𝑡𝑘+1−𝐵𝑡𝑘

√𝑡𝑘+1−𝑡𝑘
is 𝑁(0, 1)-distributed and the quantities

𝑐 = E⎡
⎢
⎣

⎛⎜
⎝

(𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

)2

𝑡𝑘+1 − 𝑡𝑘
− 1⎞⎟

⎠

2

⎤
⎥
⎦
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are finite and do not depend on 𝑘 (𝑐 = 2, if you really want to compute it...). Therefore, as |𝜋| → 0+,

E[(𝑉 2
𝜋 − (𝑡 − 𝑠))2] = 𝑐

𝑚−1

∑
𝑘=0

(𝑡𝑘+1 − 𝑡𝑘)2 ⩽ 𝑐|𝜋|
𝑚−1

∑
𝑘=0

|𝑡𝑘+1 − 𝑡𝑘| = 𝑐|𝜋|(𝑡 − 𝑠) → 0,

which yields the thesis.

2) Observe that

𝑉 2
𝜋 =

𝑚−1

∑
𝑘=0

∣𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

∣2 ⩽ max
0⩽𝑖⩽𝑚−1

∣𝐵𝑡𝑖+1
− 𝐵𝑡𝑖

∣
𝑚−1

∑
𝑘=0

∣𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

∣

As the paths are a.s. continuous, max0⩽𝑖⩽𝑚−1∣𝐵𝑡𝑖+1
− 𝐵𝑡𝑖

∣ → 0 as |𝜋| → 0+ and therefore if the paths
had finite variation on [𝑠, 𝑡] for 𝜔 in some event 𝐴 of positive probability, then on 𝐴 we would have

lim
|𝜋|→0+

𝑚−1

∑
𝑘=0

∣𝐵𝑡𝑘+1
− 𝐵𝑡𝑘

∣ < +∞

and therefore, taking the limit, we would have lim|𝜋|→0+ 𝑉 2
𝜋 (𝜔) = 0 on 𝐴, in contradiction with point 1).

Exercise 4.
Consider a Brownian motion 𝐵 on a filtered probability space (𝛺, ℱ, 𝑃 , (ℱ𝑡)𝑡⩾0). Show that

1) for every 0 ⩽ 𝑠 < 𝑡 the r.v. 𝐵𝑡 − 𝐵𝑠 is independent of 𝐵𝑢, ∀𝑢 ⩽ 𝑠;

2) 𝐵 is a Gaussian process.

Hint. To show that a stochastic processes {𝑋𝑡}𝑡∈[0,∞) is a Gaussian it is enough to show that for any
𝑡1, 𝑡2, … , 𝑡𝑚 ∈ R+ and any 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ R the random variable 𝑍 = ∑𝑚

𝑖=1 𝛼𝑖𝑋𝑡𝑖
is Gaussian.

Solution

1) From the definition of Brownian motion we know that 𝐵𝑢 is ℱ𝑢 measurable, hence ℱ𝑠 measurable
since 𝐹𝑢 ⊂ 𝐹𝑠. This implies that 𝜎(𝐵𝑢) ⊂ ℱ𝑠. Again, by definition of Brownian motion 𝐵𝑡 − 𝐵𝑠 is
independent of ℱ𝑠, hence it is also independent of 𝜎(𝐵𝑢), for all 𝑢 ⩽ 𝑠, which is equivalent to say that
𝐵𝑡 − 𝐵𝑠 id independent of 𝐵𝑢 for all 𝑢 ⩽ 𝑠.

2) One has to prove that the joint distributions of 𝐵𝑡1
, … , 𝐵𝑡𝑚

is Gaussian. The proof follows by induction.
This is obvious if 𝑚 = 1, with 𝑠 = 0 one has 𝐵𝑡 ∼ 𝑁(0, 𝑡) via definition of Brownian motion.
Let us assume that ∑𝑚

𝑖=1 𝛼𝑖𝐵𝑠𝑖
, for any 𝛼1, … , 𝛼𝑚 ∈ R and any 𝑠1, 𝑠2, ⋯ , 𝑠𝑚 ∈ R+, is Gaussian and

consider 𝑌 = ∑𝑚+1
𝑖=1 𝛼𝑖𝐵𝑡𝑖

with w.l.o.g. 0 ⩽ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚+1. Then, we can write

𝑌 = 𝛼1𝐵𝑡1
+ ⋯ + 𝛼𝑚+1𝐵𝑡𝑚+1

= [𝛼1𝐵𝑡1
+ ⋯ + (𝛼𝑚 + 𝛼𝑚+1)𝐵𝑡𝑚

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
̃𝑌

+𝛼𝑚+1(𝐵𝑡𝑚+1
− 𝐵𝑡𝑚

)

By induction assumption ̃𝑌 is Gaussian and 𝐵𝑡𝑚+1
− 𝐵𝑡𝑚

is Gaussian by definition and independent of ̃𝑌
via point 1). This yields the thesis.

Exercise 5.
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The family of Haar functions {ℎ𝑘}𝑘⩾0 is defined for 0 ⩽ 𝑡 ⩽ 1 as

ℎ0(𝑡) = 1, ℎ1(𝑡) = { 1 if 0 ⩽ 𝑡 ⩽ 1/2,
−1 if 1/2 < 𝑡 ⩽ 1,

and for 2𝑛 ⩽ 𝑘 < 2𝑛+1 with 𝑛 = 1, 2, … as

ℎ𝑘(𝑡) =
⎧{{
⎨{{⎩

2𝑛/2 if 𝑘−2𝑛

2𝑛
⩽ 𝑡 ⩽ 𝑘−2𝑛+1/2

2𝑛
,

−2𝑛/2 if 𝑘−2𝑛+1/2
2𝑛

< 𝑡 ⩽ 𝑘−2𝑛+1
2𝑛

, 𝑛 = ⌊log2 𝑘⌋
0 otherwise.

i) Show that {ℎ𝑘}𝑘⩾0 is orthonormal in L2(0, 1).

ii) Show that {ℎ𝑘}𝑘⩾0 is complete in L2(0, 1), i.e., 𝑓 = ∑∞
𝑘=0⟨𝑓, ℎ𝑘⟩ℎ𝑘 in L2(0, 1) for any 𝑓 ∈ L2(0, 1).

Hint. First prove that if ⟨𝑔, ℎ𝑘⟩ = 0 for all 𝑘 ⩾ 0 then 𝑔 = 0 a.s. by showing that ∫𝑡
𝑠 𝑔 = 0 for all

0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1.

Solution
(See Evans chapter 3 for more details.)

i) First, for any 𝑘 ⩾ 0 it holds ⟨ℎ𝑘, ℎ𝑘⟩ = 2−𝑛(2𝑛/2)2 = 1. Then, note that if 2𝑛 ⩽ 𝑘 < 𝑙 < 2𝑛+1 for a 𝑛 ⩾ 1,
the support of ℎ𝑘 and ℎ𝑙 are disjoint and hence ⟨ℎ𝑘, ℎ𝑙⟩ = 0. Finally, if 2𝑛1 ⩽ 𝑘 < 2𝑛1+1 ⩽ 2𝑛2 ⩽ 𝑙 < 2𝑛2+1

for 1 ⩽ 𝑛1 < 𝑛2, then the support of ℎ𝑙 is included in the half-support of ℎ𝑘, hence ℎ𝑘ℎ𝑙 = ±2𝑛2/2ℎ𝑘
and hence ⟨ℎ𝑘, ℎ𝑙⟩ = 0.

ii) Assume that ⟨𝑓, ℎ𝑘⟩ = 0 for all 𝑘 ⩾ 0. First, it holds ⟨𝑓, ℎ0⟩ = ∫1
0 𝑓 = 0. Then, we have ⟨𝑓, ℎ1⟩ =

∫1/2
0 𝑓−∫1

1/2 𝑓 = 0 and that implies ∫1/2
0 𝑓 = ∫1

1/2 𝑓 which due to the previous step gives 2 ∫1/2
0 𝑓 = ∫1

0 𝑓 = 0

and we conclude that ∫1/2
0 𝑓 = ∫1

1/2 𝑓 = 0. Continuing with the same reasoning we can show that for any

𝑛 ⩾ 1 and for all 0 ⩽ 𝑘 < 2𝑛 + 1 we have ∫(𝑘+1)/2𝑛+1

𝑘/2𝑛+1 𝑓 = 0. Hence, by density of the extrema in [0, 1]

we deduce that for any 0 ⩽ 𝑡, 𝑠 ⩽ 1 it holds ∫𝑡
𝑠 𝑓 = 0, which implies that 𝑓 = 0 a.e. in [0, 1]. Now let

𝑓 ∈ L2(0, 1). Note that 𝑔 = 𝑓 − ∑∞
𝑘=0⟨𝑓, ℎ𝑘⟩ℎ𝑘 satisfies ⟨𝑔, ℎ𝑗⟩ = 0 for all 𝑗 ⩾ 0, and therefore 𝑔 = 0 a.e.

and 𝑓 = ∑∞
𝑘=0⟨𝑓, ℎ𝑘⟩ℎ𝑘 in L2(0, 1).

Exercise 6.
The family of Schauder functions {𝑠𝑘}𝑘⩾0 is defined for 0 ⩽ 𝑡 ⩽ 1 as 𝑠𝑘(𝑡) = ⟨𝜒[0,𝑡], ℎ𝑘⟩, where {ℎ𝑘}𝑘⩾0 are

the Haar functions and ⟨⋅, ⋅⟩ is the inner product in L2(0, 1). Then let 𝑊(𝑡) = ∑∞
𝑘=0 𝜉𝑘𝑠𝑘(𝑡), where {𝜉𝑘}𝑘⩾0 is

a sequence of independent standard Gaussian random variables 𝜉𝑘 ∼ 𝑁(0, 1).

i) Show that ∑∞
𝑘=0 𝑠𝑘(𝑟)𝑠𝑘(𝑡) = min{𝑟, 𝑡} for all 0 ⩽ 𝑟, 𝑡 ⩽ 1.

ii) Show that there exists a constant 𝐶 > 0 such that for all 𝑘 ⩾ 2 it holds

𝑃(|𝜉𝑘| > 4√log 𝑘) ⩽ 𝐶𝑘−4,

and deduce that almost surely there exists a positive integer 𝑘̄ such that for all 𝑘 > 𝑘̄ it holds
|𝜉𝑘| ⩽ 4√log 𝑘.
Hint. Apply Borel–Cantelli lemma.

iii) Prove that the series 𝑊(𝑡) converges uniformly for 𝑡 ∈ [0, 1].
Hint. You can follow these steps where 𝐶 > 0 is a positive constant.
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a) Show that almost surely for 𝑛 big enough max2𝑛⩽𝑘<2𝑛+1 |𝜉𝑘| ⩽ 𝐶2
𝑛+1

4 .

b) Show that ∑2𝑛+1−1
𝑘=2𝑛 |𝑠𝑘(𝑡)| ⩽ 2− 𝑛+2

2 .

c) Show that for 𝑚 big enough ∑∞
𝑘=2𝑚 |𝜉𝑘||𝑠𝑘(𝑡)| ⩽ 𝐶 ∑∞

𝑛=𝑚 2− 𝑛+3
4 .

Solution

i) For 0 ⩽ 𝑠, 𝑡 ⩽ 1, using Exercise 5 we have
∞

∑
𝑘=0

𝑠𝑘(𝑡)𝑠𝑘(𝑠) =
∞

∑
𝑘=0

⟨𝜒[0,𝑡], ℎ𝑘⟩⟨𝜒[0,𝑠], ℎ𝑘⟩ = ⟨𝜒[0,𝑡],
∞

∑
𝑘=0

⟨𝜒[0,𝑠], ℎ𝑘⟩ℎ𝑘⟩ = ⟨𝜒[0,𝑡], 𝜒[0,𝑠]⟩

= min{𝑠, 𝑡}.

ii) For any 𝑥 > 0 and 𝑘 ⩾ 2 we have

𝑃(|𝜉𝑘| > 𝑥) = 2
√

2𝜋
∫

∞

𝑥
𝑒− 𝑠2

2 ⩽ 2
√

2𝜋
𝑒− 𝑥2

4 ∫
∞

𝑥
𝑒− 𝑠2

4 ⩽ 2
√

2𝜋
𝑒− 𝑥2

4 ∫
∞

0
𝑒− 𝑠2

4 .

Hence, setting 𝑥 = 4√log 𝑘 and 𝐶 = 2
√

2𝜋
∫∞
0 𝑒− 𝑠2

4 , we obtain

𝑃(|𝜉𝑘| > 4√log 𝑘) ⩽ 𝐶𝑒−4 log 𝑘 ⩽ 𝐶𝑘−4.

Since ∑ 𝑘−4 < ∞, Borel–Cantelli lemma implies that 𝑃(|𝜉𝑘| > 4√log 𝑘 i.o.) = 0. Consequently,
𝑃(|𝜉𝑘| ⩽ 4√log 𝑘 eventually) = 1 and almost surely for any sufficiently large 𝑘 it holds |𝜉𝑘| ⩽ 4√log 𝑘.

iii) First, note that √log 𝑘 ⩽
√

2𝑘1/4 (for all 𝑥, 𝛼 > 0 we have 𝛼 log 𝑥 = log(𝑥𝛼) ⩽ 𝑥𝛼), hence from the
previous point we have

max
2𝑛⩽𝑘<2𝑛+1

|𝜉𝑘| ⩽ max
𝑘

4
√

2𝑘1/4 ⩽ 𝐶2
𝑛+1

4 ,

where 𝐶 = 4
√

2. Furthermore, note that for any 2𝑛 ⩽ 𝑘 < 2𝑛+1 with 𝑛 ⩾ 2 and for all 0 ⩽ 𝑡 ⩽ 1,
|𝑠𝑘(𝑡)| ⩽ 2−(𝑛+2)/2 (hat functions) and therefore

2𝑛+1−1

∑
𝑘=2𝑛

|𝑠𝑘(𝑡)| ⩽ 2− 𝑛+2
2 ,

as the hat functions have non-overlapping supports. Consequently, for any 0 ⩽ 𝑡 ⩽ 1, we bound the
remainder by

∞

∑
𝑘=2𝑚

|𝜉𝑘||𝑠𝑘(𝑡)| =
∞

∑
𝑛=𝑚

2𝑛+1−1

∑
𝑘=2𝑛

|𝜉𝑘||𝑠𝑘(𝑡)| ⩽ 𝐶
∞

∑
𝑛=𝑚

2
𝑛+1

4 2− 𝑛+2
2 ⩽ 𝐶

∞

∑
𝑛=𝑚

2− 𝑛+3
4 .

Since the geometric series ∑(2−1/4)𝑛 converges, the remainder is smaller than 𝜖 for sufficiently large 𝑚.
As this holds for all 0 ⩽ 𝑡 ⩽ 1, the series converges uniformly on [0, 1].

Exercise 7.
The family of Schauder functions {𝑠𝑘}𝑘⩾0 is defined for 0 ⩽ 𝑡 ⩽ 1 as 𝑠𝑘(𝑡) = ⟨𝜒[0,𝑡], ℎ𝑘⟩, where {ℎ𝑘}𝑘⩾0 are

the Haar functions and ⟨⋅, ⋅⟩ is the inner product in L2(0, 1). Then let

𝑊(𝑡) =
∞

∑
𝑘=0

𝜉𝑘𝑠𝑘(𝑡), (7.1)
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where {𝜉𝑘}𝑘⩾0 is a sequence of independent standard Gaussian random variables 𝜉𝑘 ∼ 𝑁(0, 1).
Show that 𝑊(𝑡) is actually a Brownian motion. Equation (7.1) is the Lévy-Ciesielski construction of the

Brownian motion.

Solution
To prove 𝑊(⋅) is a Brownian motion, we first note that clearly 𝑊(0) = 0 a.s. We assert as well that

𝑊(𝑡) − 𝑊(𝑠) is 𝑁(0, 𝑡 − 𝑠) for all 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1. To prove this, let us compute

𝐸(𝑒𝑖𝜆(𝑊(𝑡)−𝑊(𝑠))) = 𝐸(𝑒𝑖𝜆 ∑∞
𝑘=0 𝜉𝑘(𝑠𝑘(𝑡)−𝑠𝑘(𝑠)))

=
∞

∏
𝑘=0

𝐸(𝑒𝑖𝜆𝜉𝑘(𝑠𝑘(𝑡)−𝑠𝑘(𝑠))) by independence

=
∞

∏
𝑘=0

𝑒− 𝜆2

2
(𝑠𝑘(𝑡)−𝑠𝑘(𝑠))2

since 𝜉𝑘 is 𝑁(0, 1)

= 𝑒− 𝜆2

2
∑∞

𝑘=0(𝑠𝑘(𝑡)−𝑠𝑘(𝑠))2

= 𝑒− 𝜆2

2
∑∞

𝑘=0 𝑠2
𝑘(𝑡)−2𝑠𝑘(𝑡)𝑠𝑘(𝑠)+𝑠2

𝑘(𝑠)

= 𝑒− 𝜆2

2
(𝑡−2𝑠+𝑠) by Exercise 6

= 𝑒− 𝜆2

2
(𝑡−𝑠)

(7.2)

By uniqueness of characteristic functions, the increment 𝑊(𝑡) − 𝑊(𝑠) is 𝑁(0, 𝑡 − 𝑠), as asserted. Next we
claim for all 𝑚 = 1, 2, … and for all 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 ⩽ 1, that

𝐸(𝑒𝑖 ∑𝑚
𝑗=1 𝜆𝑗(𝑊(𝑡𝑗)−𝑊(𝑡𝑗−1))) =

𝑚

∏
𝑗=1

𝑒−
𝜆2

𝑗
2

(𝑡𝑗−𝑡𝑗−1) (7.3)

Once this is proved, we will know from uniqueness of characteristic functions that

𝐹𝑊(𝑡1),…,𝑊(𝑡𝑚)−𝑊(𝑡𝑚−1)(𝑥1, … , 𝑥𝑚) = 𝐹𝑊(𝑡1)(𝑥1) ⋯ 𝐹𝑊(𝑡𝑚)−𝑊(𝑡𝑚−1)(𝑥𝑚)

for all 𝑥1, … 𝑥𝑚 ∈ R. This proves that

𝑊(𝑡1), … , 𝑊(𝑡𝑚) − 𝑊(𝑡𝑚−1) are independent.

Thus (7.3) will establish the thesis. Now in the case 𝑚 = 2, we have

𝐸(𝑒𝑖[𝜆1𝑊(𝑡1)+𝜆2(𝑊(𝑡2)−𝑊(𝑡1))]) = 𝐸(𝑒𝑖[(𝜆1−𝜆2)𝑊(𝑡1)+𝜆2𝑊(𝑡2)])

= 𝐸(𝑒𝑖(𝜆1−𝜆2) ∑∞
𝑘=0 𝜉𝑘𝑠𝑘(𝑡1)+𝑖𝜆2 ∑∞

𝑘=0 𝜉𝑘𝑠𝑘(𝑡2))

=
∞

∏
𝑘=0

𝐸(𝑒𝑖𝜉𝑘[(𝜆1−𝜆2)𝑠𝑘(𝑡1)+𝜆2𝑠𝑘(𝑡2)])

=
∞

∏
𝑘=0

𝑒− 1
2

((𝜆1−𝜆2)𝑠𝑘(𝑡1)+𝜆2𝑠𝑘(𝑡2))2

= 𝑒− 1
2

∑∞
𝑘=0(𝜆1−𝜆2)2𝑠2

𝑘(𝑡1)+2(𝜆1−𝜆2)𝜆2𝑠𝑘(𝑡1)𝑠𝑘(𝑡2)+𝜆2
2𝑠2

𝑘(𝑡2)

= 𝑒− 1
2

[(𝜆1−𝜆2)2𝑡1+2(𝜆1−𝜆2)𝜆2𝑡1+𝜆2
2𝑡2] by Ex. 6

= 𝑒− 1
2

[𝜆2
1𝑡1+𝜆2

2(𝑡2−𝑡1)]

(7.4)

This is (7.3) for 𝑚 = 2, and the general case follows similarly.
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