

Series 2 - September 25, 2024

Exercise 1.

Let $\left(\Omega, \mathcal{F}, P, \left(\mathcal{F}_t\right)_{t\geqslant 0}\right)$ be a stochastic basis. Consider two stochastic processes $X,Y:\Omega\to\mathbb{R}^T$, with T an interval of \mathbb{R}^+ or the whole \mathbb{R}^+ , both adapted to $\left(\mathcal{F}_t\right)_{t\geqslant 0}$. Show that if X,Y are a modification of each other and they are a.s. continuous, then they are indistinguishable

Solution

As the paths of the two processes are a.s. continuous except eventually for a negligible event, if they coincide at the times of a dense subset $D \subset T$, they necessarily coincide on the whole T. Let $D = \{t_1, t_2, ...\}$ be a sequence of times which is dense in T (e.g. $T \cap \mathbb{Q}$). Then

$$\{X_t = Y_t \text{ for every } t\} = \bigcap_{t \in T} \{X_t = Y_t\} = \bigcap_{t_i \in D} \left\{X_{t_i} = Y_{t_i}\right\}$$

As $P(X_{t_i} = Y_{t_i}) = 1$ for every i, it follows that

$$\begin{split} & P\big(X_{t_i} \neq Y_{t_i}\big) \neq 0 \\ & \Longrightarrow P\big(\cup \{X_{t_i} \neq Y_{t_i}\}\big) = 0 \quad \text{(countable union of zero probability events)} \\ & \Longrightarrow P\left(\bigcap_{t_i \in D} \big\{X_{t_i} = Y_{t_i}\big\}\right) = 1 - P\big(\cup \{X_{t_i} \neq Y_{t_i}\}\big) = 1. \end{split} \tag{1.1}$$

so that also $P(X_t = Y_t \text{ for every } t) = 1$ and the two processes are indistinguishable.

Exercise 2.

Let $(X(t), 0 \le t \le T)$ and $(Y(t), 0 \le t \le T)$ be two stochastic processes. By providing counterexamples, show that:

$$i) \ \ P(X(t) = Y(t) \ \forall \ t \in \mathbb{Q} \cap [0,T]) = 1 \qquad \not \Longrightarrow \qquad P(X(t) = Y(t) \ \forall \ t \in [0,T]) = 1.$$

$$ii) \ \ P(X(t) = Y(t)) = 1 \ \forall \ t \in [0,T] \quad \implies \quad P(X(t) = Y(t) \ \forall \ t \in [0,T]) = 1.$$

(In view of the previous exercise, X, Y cannot be both a.s. continuous).

Solution

i) Consider X(t) a stochastic process defined on [0,T] and define

$$Y(t) = \begin{cases} X(t) & t \in [0, T] \cap \mathbb{Q}, \\ X(t) + 1 & t \in [0, T] \setminus \mathbb{Q}. \end{cases}$$

Then we have $P(X(t) = Y(t) \ \forall t \in \mathbb{Q} \cap [0,T]) = 1$ but $P(X(t) = Y(t) \ \forall t \in [0,T]) = 0$.

ii) Consider a uniform random variable $U \sim \mathcal{U}(0,T)$ on [0,T]. Then, define $X(t,\omega) = 0$ for all $t \in [0,T]$ and $\omega \in \Omega$ and $Y(t,\omega)$ as

$$Y(t,\omega) = \begin{cases} 1 & \text{if } t = U(\omega), \\ 0 & \text{otherwise.} \end{cases}$$

Then we have for all $t \in [0, T]$

$$P(X(t) = Y(t)) = P(Y(t) = 0) = P(U \neq t) = 1,$$

hence the left hand side of the implication is verified. Nonetheless, for all $\omega \in \Omega$ the paths $t \mapsto X(t, \omega)$ and $t \mapsto Y(t, \omega)$ are not equal as

$$Y(U(\omega), \omega) = 1 \neq 0 = X(U(\omega), \omega),$$

hence $P(X(t) = Y(t) \ \forall t \in [0, T]) = 0$.

Exercise 3.

Let B be a real Brownian motion and $\pi = \{t_0, \dots, t_m\}$ with $0 \le s = t_0 < t_1 \dots < t_m = t$ be a partition of the interval [s, t], with $|\pi| = \max_{0 \le k \le m-1} |t_{k+1} - t_k|$.

1) Show that

$$V_{\pi}^{2} = \sum_{k=0}^{m-1} \left| B_{t_{k+1}} - B_{t_{k}} \right|^{2}$$

satisfies

$$\lim_{|\pi| \to 0^+} V_{\pi}^2 = t - s \quad \text{in } L^2.$$

2) Show that $\lim_{|\pi|\to 0^+} V_{\pi}^1 = \infty$ a.s. $\forall t>s$, i.e. the paths of a Brownian motion do not have finite variation in any time interval a.s.

Solution

1) We have $\sum_{k=0}^{m-1} (t_{k+1} - t_k) = (t_1 - s) + (t_2 - t_1) + \dots + (t - t_{m-1}) = t - s$ so we can write

$$V_{\pi}^2 - (t-s) = \sum_{k=0}^{m-1} \Bigl[\bigl(B_{t_{k+1}} - B_{t_k} \bigr)^2 - (t_{k+1} - t_k) \Bigr].$$

We must prove that $\mathrm{E}\left[\left(V_{\pi}^2-(t-s)\right)^2\right]\to 0$ as $|\pi|\to 0$. Note that the random variable $v_k=\left(B_{t_{k+1}}-B_{t_k}\right)^2-(t_{k+1}-t_k),\ k=0,\ldots,m-1$ are independent (the increments of a Brownian motion over disjoint intervals are independent) and centered; therefore, if $h\neq k$ we have

$$\mathbb{E}\Big(\Big[\big(B_{t_h+1}-B_{t_h}\big)^2-(t_{h+1}-t_h)\Big]\Big[\big(B_{t_{k+1}}-B_{t_k}\big)^2-(t_{k+1}-t_k)\Big]\Big)=0,$$

so that

$$\begin{split} \mathbf{E} \left[\left(V_{\pi}^2 - (t-s) \right)^2 \right] &= \mathbf{E} \left(\sum_{k=0}^{m-1} \left[\left(B_{t_{k+1}} - B_{t_k} \right)^2 - (t_{k+1} - t_k) \right] \times \sum_{h=0}^{m-1} \left[\left(B_{t_{h+1}} - B_{t_h} \right)^2 - (t_{h+1} - t_h) \right] \right) \\ &= \sum_{k=0}^{m-1} \mathbf{E} \left(\left[\left(B_{t_{k+1}} - B_{t_k} \right)^2 - (t_{k+1} - t_k) \right]^2 \right) = \sum_{k=0}^{m-1} (t_{k+1} - t_k)^2 \mathbf{E} \left[\left(\frac{\left(B_{t_{k+1}} - B_{t_k} \right)^2 - (t_{k+1} - t_k) \right)^2}{t_{k+1} - t_k} - 1 \right)^2 \right]. \end{split}$$

$$(3.1)$$

But for every k the r.v. $\frac{B_{t_{k+1}}-B_{t_k}}{\sqrt{t_{k+1}-t_k}}$ is N(0,1)-distributed and the quantities

$$c = \mathrm{E}\left[\left(\frac{\left(B_{t_{k+1}} - B_{t_k}\right)^2}{t_{k+1} - t_k} - 1\right)^2\right]$$

are finite and do not depend on k (c=2, if you really want to compute it...). Therefore, as $|\pi|\to 0^+$,

$$\mathrm{E} \big[\big(V_{\pi}^2 - (t-s) \big)^2 \big] = c \sum_{k=0}^{m-1} (t_{k+1} - t_k)^2 \leqslant c |\pi| \sum_{k=0}^{m-1} |t_{k+1} - t_k| = c |\pi| (t-s) \to 0,$$

which yields the thesis.

2) Observe that

$$V_{\pi}^2 = \sum_{k=0}^{m-1} \left| B_{t_{k+1}} - B_{t_k} \right|^2 \leqslant \max_{0 \leqslant i \leqslant m-1} \left| B_{t_{i+1}} - B_{t_i} \right| \sum_{k=0}^{m-1} \left| B_{t_{k+1}} - B_{t_k} \right|$$

As the paths are a.s. continuous, $\max_{0 \leqslant i \leqslant m-1} |B_{t_{i+1}} - B_{t_i}| \to 0$ as $|\pi| \to 0^+$ and therefore if the paths had finite variation on [s,t] for ω in some event A of positive probability, then on A we would have

$$\lim_{|\pi| \to 0^+} \sum_{k=0}^{m-1} \left| B_{t_{k+1}} - B_{t_k} \right| < +\infty$$

and therefore, taking the limit, we would have $\lim_{|\pi|\to 0^+} V_{\pi}^2(\omega) = 0$ on A, in contradiction with point 1).

Exercise 4.

Consider a Brownian motion B on a filtered probability space $(\Omega, \mathcal{F}, P, (\mathcal{F}_t)_{t \ge 0})$. Show that

- 1) for every $0 \le s < t$ the r.v. $B_t B_s$ is independent of B_u , $\forall u \le s$;
- 2) B is a Gaussian process.

Hint. To show that a stochastic processes $\{X_t\}_{t\in[0,\infty)}$ is a Gaussian it is enough to show that for any $t_1,t_2,\ldots,t_m\in\mathbb{R}^+$ and any $\alpha_1,\alpha_2,\ldots,\alpha_m\in\mathbb{R}$ the random variable $Z=\sum_{i=1}^m\alpha_iX_{t_i}$ is Gaussian.

Solution

- 1) From the definition of Brownian motion we know that B_u is \mathcal{F}_u measurable, hence \mathcal{F}_s measurable since $F_u \subset F_s$. This implies that $\sigma(B_u) \subset \mathcal{F}_s$. Again, by definition of Brownian motion $B_t B_s$ is independent of \mathcal{F}_s , hence it is also independent of $\sigma(B_u)$, for all $u \leq s$, which is equivalent to say that $B_t B_s$ id independent of B_u for all $u \leq s$.
- 2) One has to prove that the joint distributions of B_{t_1}, \ldots, B_{t_m} is Gaussian. The proof follows by induction. This is obvious if m=1, with s=0 one has $B_t \sim N(0,t)$ via definition of Brownian motion. Let us assume that $\sum_{i=1}^m \alpha_i B_{s_i}$, for any $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ and any $s_1, s_2, \cdots, s_m \in \mathbb{R}^+$, is Gaussian and consider $Y = \sum_{i=1}^{m+1} \alpha_i B_{t_i}$ with w.l.o.g. $0 \leqslant t_1 < t_2 < \cdots < t_{m+1}$. Then, we can write

$$Y = \alpha_1 B_{t_1} + \dots + \alpha_{m+1} B_{t_{m+1}} = \underbrace{\left[\alpha_1 B_{t_1} + \dots + (\alpha_m + \alpha_{m+1}) B_{t_m}\right]}_{\tilde{Y}} + \alpha_{m+1} \left(B_{t_{m+1}} - B_{t_m}\right)$$

By induction assumption \tilde{Y} is Gaussian and $B_{t_{m+1}} - B_{t_m}$ is Gaussian by definition and independent of \tilde{Y} via point 1). This yields the thesis.

Exercise 5.

The family of Haar functions $\{h_k\}_{k\geqslant 0}$ is defined for $0\leqslant t\leqslant 1$ as

$$h_0(t) = 1, \qquad h_1(t) = \left\{ \begin{array}{ll} 1 & \text{if } 0 \leqslant t \leqslant 1/2, \\ -1 & \text{if } 1/2 < t \leqslant 1, \end{array} \right.$$

and for $2^n \leqslant k < 2^{n+1}$ with $n = 1, 2, \dots$ as

$$h_k(t) = \begin{cases} 2^{n/2} & \text{if } \frac{k-2^n}{2^n} \leqslant t \leqslant \frac{k-2^n+1/2}{2^n}, \\ -2^{n/2} & \text{if } \frac{k-2^n+1/2}{2^n} < t \leqslant \frac{k-2^n+1}{2^n}, \\ 0 & \text{otherwise.} \end{cases}, \quad n = \lfloor \log_2 k \rfloor$$

- i) Show that $\{h_k\}_{k\geqslant 0}$ is orthonormal in L²(0, 1).
- ii) Show that $\{h_k\}_{k\geqslant 0}$ is complete in $L^2(0,1)$, i.e., $f=\sum_{k=0}^{\infty}\langle f,h_k\rangle h_k$ in $L^2(0,1)$ for any $f\in L^2(0,1)$. Hint. First prove that if $\langle g,h_k\rangle=0$ for all $k\geqslant 0$ then g=0 a.s. by showing that $\int_s^tg=0$ for all $0\leqslant s\leqslant t\leqslant 1$.

Solution

(See Evans chapter 3 for more details.)

- i) First, for any $k \geqslant 0$ it holds $\langle h_k, h_k \rangle = 2^{-n}(2^{n/2})^2 = 1$. Then, note that if $2^n \leqslant k < l < 2^{n+1}$ for a $n \geqslant 1$, the support of h_k and h_l are disjoint and hence $\langle h_k, h_l \rangle = 0$. Finally, if $2^{n_1} \leqslant k < 2^{n_1+1} \leqslant 2^{n_2} \leqslant l < 2^{n_2+1}$ for $1 \leqslant n_1 < n_2$, then the support of h_l is included in the half-support of h_k , hence $h_k h_l = \pm 2^{n_2/2} h_k$ and hence $\langle h_k, h_l \rangle = 0$.
- ii) Assume that $\langle f,h_k\rangle=0$ for all $k\geqslant 0$. First, it holds $\langle f,h_0\rangle=\int_0^1 f=0$. Then, we have $\langle f,h_1\rangle=\int_0^{1/2}f-\int_{1/2}^1f=0$ and that implies $\int_0^{1/2}f=\int_{1/2}^1f$ which due to the previous step gives $2\int_0^{1/2}f=\int_0^1f=0$ and we conclude that $\int_0^{1/2}f=\int_{1/2}^1f=0$. Continuing with the same reasoning we can show that for any $n\geqslant 1$ and for all $0\leqslant k<2^n+1$ we have $\int_{k/2^{n+1}}^{(k+1)/2^{n+1}}f=0$. Hence, by density of the extrema in [0,1] we deduce that for any $0\leqslant t,s\leqslant 1$ it holds $\int_s^tf=0$, which implies that f=0 a.e. in [0,1]. Now let $f\in \mathrm{L}^2(0,1)$. Note that $g=f-\sum_{k=0}^\infty\langle f,h_k\rangle h_k$ satisfies $\langle g,h_j\rangle=0$ for all $j\geqslant 0$, and therefore g=0 a.e. and $f=\sum_{k=0}^\infty\langle f,h_k\rangle h_k$ in $\mathrm{L}^2(0,1)$.

Exercise 6.

The family of Schauder functions $\{s_k\}_{k\geqslant 0}$ is defined for $0\leqslant t\leqslant 1$ as $s_k(t)=\langle \chi_{[0,t]},h_k\rangle$, where $\{h_k\}_{k\geqslant 0}$ are the Haar functions and $\langle\cdot,\cdot\rangle$ is the inner product in $\mathrm{L}^2(0,1)$. Then let $W(t)=\sum_{k=0}^\infty \xi_k s_k(t)$, where $\{\xi_k\}_{k\geqslant 0}$ is a sequence of independent standard Gaussian random variables $\xi_k\sim N(0,1)$.

- i) Show that $\sum_{k=0}^{\infty} s_k(r) s_k(t) = \min\{r,t\}$ for all $0 \leqslant r,t \leqslant 1.$
- ii) Show that there exists a constant C > 0 such that for all $k \ge 2$ it holds

$$P(|\xi_k| > 4\sqrt{\log k}) \leqslant Ck^{-4},$$

and deduce that almost surely there exists a positive integer \bar{k} such that for all $k > \bar{k}$ it holds $|\xi_k| \leq 4\sqrt{\log k}$. *Hint.* Apply Borel–Cantelli lemma.

iii) Prove that the series W(t) converges uniformly for $t \in [0,1]$. Hint. You can follow these steps where C > 0 is a positive constant.

- a) Show that almost surely for n big enough $\max_{2^n \leqslant k < 2^{n+1}} |\xi_k| \leqslant C2^{\frac{n+1}{4}}$.
- b) Show that $\sum_{k=2^n}^{2^{n+1}-1} |s_k(t)| \leq 2^{-\frac{n+2}{2}}$.
- c) Show that for m big enough $\sum_{k=2^m}^{\infty} |\xi_k| |s_k(t)| \leqslant C \sum_{n=m}^{\infty} 2^{-\frac{n+3}{4}}$.

Solution

i) For $0 \le s, t \le 1$, using Exercise 5 we have

$$\begin{split} \sum_{k=0}^{\infty} s_k(t) s_k(s) &= \sum_{k=0}^{\infty} \langle \chi_{[0,t]}, h_k \rangle \langle \chi_{[0,s]}, h_k \rangle = \langle \chi_{[0,t]}, \sum_{k=0}^{\infty} \langle \chi_{[0,s]}, h_k \rangle h_k \rangle = \langle \chi_{[0,t]}, \chi_{[0,s]} \rangle \\ &= \min\{s,t\}. \end{split}$$

ii) For any x > 0 and $k \ge 2$ we have

$$P(|\xi_k| > x) = \frac{2}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{s^2}{2}} \leqslant \frac{2}{\sqrt{2\pi}} e^{-\frac{x^2}{4}} \int_x^\infty e^{-\frac{s^2}{4}} \leqslant \frac{2}{\sqrt{2\pi}} e^{-\frac{x^2}{4}} \int_0^\infty e^{-\frac{s^2}{4}} \; .$$

Hence, setting $x = 4\sqrt{\log k}$ and $C = \frac{2}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{s^2}{4}}$, we obtain

$$P(|\xi_k| > 4\sqrt{\log k}) \leqslant Ce^{-4\log k} \leqslant Ck^{-4}.$$

Since $\sum k^{-4} < \infty$, Borel–Cantelli lemma implies that $P(|\xi_k| > 4\sqrt{\log k} \text{ i.o.}) = 0$. Consequently, $P(|\xi_k| \le 4\sqrt{\log k} \text{ eventually}) = 1$ and almost surely for any sufficiently large k it holds $|\xi_k| \le 4\sqrt{\log k}$.

iii) First, note that $\sqrt{\log k} \leqslant \sqrt{2}k^{1/4}$ (for all $x, \alpha > 0$ we have $\alpha \log x = \log(x^{\alpha}) \leqslant x^{\alpha}$), hence from the previous point we have

$$\max_{2^{n} \le k < 2^{n+1}} |\xi_k| \le \max_k 4\sqrt{2}k^{1/4} \le C2^{\frac{n+1}{4}},$$

where $C=4\sqrt{2}$. Furthermore, note that for any $2^n\leqslant k<2^{n+1}$ with $n\geqslant 2$ and for all $0\leqslant t\leqslant 1$, $|s_k(t)|\leqslant 2^{-(n+2)/2}$ (hat functions) and therefore

$$\sum_{k=2^n}^{2^{n+1}-1} |s_k(t)| \leqslant 2^{-\frac{n+2}{2}},$$

as the hat functions have non-overlapping supports. Consequently, for any $0 \le t \le 1$, we bound the remainder by

$$\sum_{k=2^m}^{\infty} |\xi_k| |s_k(t)| = \sum_{n=m}^{\infty} \sum_{k=2^n}^{2^{n+1}-1} |\xi_k| |s_k(t)| \leqslant C \sum_{n=m}^{\infty} 2^{\frac{n+1}{4}} 2^{-\frac{n+2}{2}} \leqslant C \sum_{n=m}^{\infty} 2^{-\frac{n+3}{4}}.$$

Since the geometric series $\sum (2^{-1/4})^n$ converges, the remainder is smaller than ϵ for sufficiently large m. As this holds for all $0 \le t \le 1$, the series converges uniformly on [0,1].

Exercise 7.

The family of Schauder functions $\{s_k\}_{k\geqslant 0}$ is defined for $0\leqslant t\leqslant 1$ as $s_k(t)=\langle \chi_{[0,t]},h_k\rangle$, where $\{h_k\}_{k\geqslant 0}$ are the Haar functions and $\langle\cdot,\cdot\rangle$ is the inner product in $L^2(0,1)$. Then let

$$W(t) = \sum_{k=0}^{\infty} \xi_k s_k(t), \tag{7.1}$$

where $\{\xi_k\}_{k\geqslant 0}$ is a sequence of independent standard Gaussian random variables $\xi_k \sim N(0,1)$.

Show that W(t) is actually a Brownian motion. Equation (7.1) is the Lévy-Ciesielski construction of the Brownian motion.

Solution

To prove $W(\cdot)$ is a Brownian motion, we first note that clearly W(0) = 0 a.s. We assert as well that W(t) - W(s) is N(0, t - s) for all $0 \le s \le t \le 1$. To prove this, let us compute

$$\begin{split} E \Big(e^{i\lambda(W(t) - W(s))} \Big) &= E \Big(e^{i\lambda \sum_{k=0}^{\infty} \xi_k(s_k(t) - s_k(s))} \Big) \\ &= \prod_{k=0}^{\infty} E \Big(e^{i\lambda \xi_k(s_k(t) - s_k(s))} \Big) \quad \text{by independence} \\ &= \prod_{k=0}^{\infty} e^{-\frac{\lambda^2}{2} (s_k(t) - s_k(s))^2} \quad \text{since } \xi_k \text{ is } N(0, 1) \\ &= e^{-\frac{\lambda^2}{2} \sum_{k=0}^{\infty} (s_k(t) - s_k(s))^2} \\ &= e^{-\frac{\lambda^2}{2} \sum_{k=0}^{\infty} s_k^2(t) - 2s_k(t) s_k(s) + s_k^2(s)} \\ &= e^{-\frac{\lambda^2}{2} (t - 2s + s)} \quad \text{by Exercise 6} \\ &= e^{-\frac{\lambda^2}{2} (t - s)} \end{split}$$

By uniqueness of characteristic functions, the increment W(t)-W(s) is N(0,t-s), as asserted. Next we claim for all m=1,2,... and for all $0=t_0 < t_1 < \cdots < t_m \leqslant 1$, that

$$E\left(e^{i\sum_{j=1}^{m}\lambda_{j}(W(t_{j})-W(t_{j-1}))}\right) = \prod_{j=1}^{m} e^{-\frac{\lambda_{j}^{2}}{2}(t_{j}-t_{j-1})}$$
(7.3)

Once this is proved, we will know from uniqueness of characteristic functions that

$$F_{W(t_1),\dots,W(t_m)-W(t_{m-1})}(x_1,\dots,x_m) = F_{W(t_1)}(x_1)\cdots F_{W(t_m)-W(t_{m-1})}(x_m)$$

for all $x_1, \dots x_m \in \mathbb{R}$. This proves that

$$W(t_1), \dots, W(t_m) - W(t_{m-1})$$
 are independent.

Thus (7.3) will establish the thesis. Now in the case m=2, we have

$$E(e^{i[\lambda_{1}W(t_{1})+\lambda_{2}(W(t_{2})-W(t_{1}))]}) = E(e^{i[(\lambda_{1}-\lambda_{2})W(t_{1})+\lambda_{2}W(t_{2})]})$$

$$= E(e^{i(\lambda_{1}-\lambda_{2})\sum_{k=0}^{\infty}\xi_{k}s_{k}(t_{1})+i\lambda_{2}\sum_{k=0}^{\infty}\xi_{k}s_{k}(t_{2})})$$

$$= \prod_{k=0}^{\infty} E(e^{i\xi_{k}[(\lambda_{1}-\lambda_{2})s_{k}(t_{1})+\lambda_{2}s_{k}(t_{2})]})$$

$$= \prod_{k=0}^{\infty} e^{-\frac{1}{2}((\lambda_{1}-\lambda_{2})s_{k}(t_{1})+\lambda_{2}s_{k}(t_{2}))^{2}}$$

$$= e^{-\frac{1}{2}\sum_{k=0}^{\infty}(\lambda_{1}-\lambda_{2})^{2}s_{k}^{2}(t_{1})+2(\lambda_{1}-\lambda_{2})\lambda_{2}s_{k}(t_{1})s_{k}(t_{2})+\lambda_{2}^{2}s_{k}^{2}(t_{2})}$$

$$= e^{-\frac{1}{2}[(\lambda_{1}-\lambda_{2})^{2}t_{1}+2(\lambda_{1}-\lambda_{2})\lambda_{2}t_{1}+\lambda_{2}^{2}t_{2}]} \quad \text{by Ex. 6}$$

$$= e^{-\frac{1}{2}[\lambda_{1}^{2}t_{1}+\lambda_{2}^{2}(t_{2}-t_{1})]}$$

This is (7.3) for m=2, and the general case follows similarly.