

# Series 2 - September 25, 2024

## Exercise 1.

Let  $\left(\Omega, \mathcal{F}, P, \left(\mathcal{F}_t\right)_{t\geqslant 0}\right)$  be a stochastic basis. Consider two stochastic processes  $X,Y:\Omega\to\mathbb{R}^T$ , with T an interval of  $\mathbb{R}^+$  or the whole  $\mathbb{R}^+$ , both adapted to  $\left(\mathcal{F}_t\right)_{t\geqslant 0}$ . Show that if X,Y are a modification of each other and they are a.s. continuous, then they are indistinguishable

#### Exercise 2.

Let  $(X(t), 0 \le t \le T)$  and  $(Y(t), 0 \le t \le T)$  be two stochastic processes. By providing counterexamples, show that:

$$i) \ \ P(X(t) = Y(t) \ \forall \ t \in \mathbb{Q} \cap [0,T]) = 1 \quad \implies \quad P(X(t) = Y(t) \ \forall \ t \in [0,T]) = 1.$$

$$ii) \ \ P(X(t)=Y(t))=1 \ \forall \ t \in [0,T] \qquad \Longrightarrow \qquad P(X(t)=Y(t) \ \forall \ t \in [0,T])=1.$$

(In view of the previous exercise, X, Y cannot be both a.s. continuous).

#### Exercise 3.

Let B be a real Brownian motion and  $\pi = \{t_0, \dots, t_m\}$  with  $0 \le s = t_0 < t_1 \dots < t_m = t$  be a partition of the interval [s,t], with  $|\pi| = \max_{0 \le k \le m-1} |t_{k+1} - t_k|$ .

1) Show that

$$V_{\pi}^2 = \sum_{k=0}^{m-1} \left| B_{t_{k+1}} - B_{t_k} \right|^2$$

satisfies

$$\lim_{|\pi| \to 0^+} V_{\pi}^2 = t - s \quad \text{ in } L^2.$$

2) Show that  $\lim_{|\pi|\to 0^+} V_{\pi}^1 = \infty$  a.s.  $\forall t > s$ , i.e. the paths of a Brownian motion do not have finite variation in any time interval a.s.

## Exercise 4.

Consider a Brownian motion B on a filtered probability space  $(\Omega, \mathcal{F}, P, (\mathcal{F}_t)_{t \geqslant 0})$ . Show that

- 1) for every  $0 \le s < t$  the r.v.  $B_t B_s$  is independent of  $B_u$ ,  $\forall u \le s$ ;
- 2) B is a Gaussian process.

*Hint.* To show that a stochastic processes  $\{X_t\}_{t\in[0,\infty)}$  is a Gaussian it is enough to show that for any  $t_1,t_2,\ldots,t_m\in\mathbb{R}^+$  and any  $\alpha_1,\alpha_2,\ldots,\alpha_m\in\mathbb{R}$  the random variable  $Z=\sum_{i=1}^m\alpha_iX_{t_i}$  is Gaussian.

## Exercise 5.

The family of Haar functions  $\{h_k\}_{k\geqslant 0}$  is defined for  $0\leqslant t\leqslant 1$  as

$$h_0(t) = 1,$$
  $h_1(t) = \begin{cases} 1 & \text{if } 0 \leqslant t \leqslant 1/2, \\ -1 & \text{if } 1/2 < t \leqslant 1, \end{cases}$ 

and for  $2^n \le k < 2^{n+1}$  with  $n = 1, 2, \dots$  as

$$h_k(t) = \begin{cases} 2^{n/2} & \text{if } \frac{k-2^n}{2^n} \leqslant t \leqslant \frac{k-2^n+1/2}{2^n}, \\ -2^{n/2} & \text{if } \frac{k-2^n+1/2}{2^n} < t \leqslant \frac{k-2^n+1}{2^n}, \\ 0 & \text{otherwise.} \end{cases}$$
  $n = \lfloor \log_2 k \rfloor$ 

- i) Show that  $\{h_k\}_{k\geqslant 0}$  is orthonormal in  $L^2(0,1)$ .
- ii) Show that  $\{h_k\}_{k\geqslant 0}$  is complete in  $L^2(0,1)$ , i.e.,  $f=\sum_{k=0}^{\infty}\langle f,h_k\rangle h_k$  in  $L^2(0,1)$  for any  $f\in L^2(0,1)$ . Hint. First prove that if  $\langle g,h_k\rangle=0$  for all  $k\geqslant 0$  then g=0 a.s. by showing that  $\int_s^t g=0$  for all  $0\leqslant s\leqslant t\leqslant 1$ .

## Exercise 6.

The family of Schauder functions  $\{s_k\}_{k\geqslant 0}$  is defined for  $0\leqslant t\leqslant 1$  as  $s_k(t)=\langle \chi_{[0,t]},h_k\rangle$ , where  $\{h_k\}_{k\geqslant 0}$  are the Haar functions and  $\langle\cdot,\cdot\rangle$  is the inner product in  $L^2(0,1)$ . Then let  $W(t)=\sum_{k=0}^\infty \xi_k s_k(t)$ , where  $\{\xi_k\}_{k\geqslant 0}$  is a sequence of independent standard Gaussian random variables  $\xi_k\sim N(0,1)$ .

- i) Show that  $\sum_{k=0}^{\infty} s_k(r) s_k(t) = \min\{r,t\}$  for all  $0 \leqslant r,t \leqslant 1.$
- ii) Show that there exists a constant C > 0 such that for all  $k \ge 2$  it holds

$$P(|\xi_k| > 4\sqrt{\log k}) \leqslant Ck^{-4}.$$

and deduce that almost surely there exists a positive integer  $\bar{k}$  such that for all  $k > \bar{k}$  it holds  $|\xi_k| \leq 4\sqrt{\log k}$ .

Hint. Apply Borel-Cantelli lemma.

- iii) Prove that the series W(t) converges uniformly for  $t \in [0,1]$ . Hint. You can follow these steps where C > 0 is a positive constant.
  - a) Show that almost surely for n big enough  $\max_{2^n \leqslant k < 2^{n+1}} |\xi_k| \leqslant C2^{\frac{n+1}{4}}$ .
  - b) Show that  $\sum_{k=2^n}^{2^{n+1}-1} |s_k(t)| \leqslant 2^{-\frac{n+2}{2}}$ .
  - c) Show that for m big enough  $\sum_{k=2^m}^{\infty} |\xi_k| |s_k(t)| \leqslant C \sum_{n=m}^{\infty} 2^{-\frac{n+3}{4}}$ .

## Exercise 7.

The family of Schauder functions  $\{s_k\}_{k\geqslant 0}$  is defined for  $0\leqslant t\leqslant 1$  as  $s_k(t)=\langle \chi_{[0,t]},h_k\rangle$ , where  $\{h_k\}_{k\geqslant 0}$  are the Haar functions and  $\langle\cdot,\cdot\rangle$  is the inner product in  $L^2(0,1)$ . Then let

$$W(t) = \sum_{k=0}^{\infty} \xi_k s_k(t), \tag{7.1}$$

where  $\{\xi_k\}_{k\geq 0}$  is a sequence of independent standard Gaussian random variables  $\xi_k \sim N(0,1)$ .

Show that W(t) is actually a Brownian motion. Equation (7.1) is the Lévy-Ciesielski construction of the Brownian motion.