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Exercise 1.
Let (𝛺, ℱ, 𝑃) be a probability space
and {𝐹𝑛}𝑛⩾1 be a countable sequence of ℱ. Show that:

i) if 𝐹𝑛 ⊆ 𝐹𝑛+1 for all 𝑛 ⩾ 1 then 𝑃(
∞

⋃
𝑛=1

𝐹𝑛) = lim
𝑛→∞

𝑃(𝐹𝑛),

ii) if 𝐹𝑛 ⊇ 𝐹𝑛+1 for all 𝑛 ⩾ 1 then 𝑃(
∞

⋂
𝑛=1

𝐹𝑛) = lim
𝑛→∞

𝑃(𝐹𝑛).

Moreover, show that there exists a sequence {𝐹 ′
𝑛}𝑛⩾1 such that 𝐹 ′

𝑖 ∩ 𝐹 ′
𝑗 = ∅ if 𝑖 ≠ 𝑗 and

∞

⋃
𝑛=1

𝐹 ′
𝑛 =

∞

⋃
𝑛=1

𝐹𝑛.

Exercise 2.
Let (𝛺, ℱ, 𝑃) be a probability space and {𝐴𝑖}𝑖⩾1 be a sequence of events, i.e., 𝐴𝑖 ∈ ℱ.

i) Show that the event 𝐸 = {“infinitely many 𝐴𝑖 occur”} can be written

𝐸 =
∞

⋂
𝑛=1

∞

⋃
𝑖=𝑛

𝐴𝑖.

Remark. The set 𝐸 is often called “𝐴𝑖 i.o.”, which means “𝐴𝑖 infinitely often”.

ii) Describe the event 𝐻 = ⋃∞
𝑛=1 ⋂∞

𝑖=𝑛 𝐴𝑖.

iii) Show that if ∑∞
𝑖=1 𝑃(𝐴𝑖) < ∞ then 𝑃(𝐴𝑖 i.o.) = 0 (Borel–Cantelli lemma).

Exercise 3.
Let (𝛺, ℱ, 𝑃) be a probability space and 𝑋∶ 𝛺 → R𝑛 be an 𝑛-dimensional random variable. Show that

ℱ(𝑋) = {𝑋−1(𝐵)∶ 𝐵 ∈ ℬ}, where ℬ is the Borel 𝜎-algebra on R𝑛, is a 𝜎-algebra. Observe that ℱ(𝑋) is the
smallest 𝜎-algebra with respect to which 𝑋 is measurable.

Exercise 4.
Let (𝛺, ℱ, 𝑃) be a probability space, {𝑋𝑛}𝑛⩾1 be a sequence of real-valued random variables 𝑋𝑛 ∶ 𝛺 → R

and 𝑋∶ 𝛺 → R be another real-valued random variable. Denote by 𝐹𝑛 and 𝐹 the distribution function of 𝑋𝑛
and 𝑋, respectively, and recall the following notions of convergence of random variables:

• 𝑋𝑛 → 𝑋 in L2 if E[|𝑋𝑛 − 𝑋|2] → 0 as 𝑛 → ∞,

• 𝑋𝑛 → 𝑋 in probability if for all 𝜖 > 0 it holds 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) → 0 as 𝑛 → ∞,
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• 𝑋𝑛 → 𝑋 in distribution if E[𝑔(𝑋𝑛)] → E[𝑔(𝑋)] as 𝑛 → ∞, for any 𝑔 ∈ 𝐶0
𝑏 (R).

i) Prove that 𝑋𝑛 → 𝑋 in L2 implies 𝑋𝑛 → 𝑋 in probability.

ii) Show that if 𝑋𝑛 → 𝑋 in probability, then one can extract a subsequence from 𝑋𝑛 a.s converging to 𝑋.
Prove also the following implication: 𝑋𝑛 → 𝑋 in probability if and only if for every subsequence 𝑋𝑛𝑘
one can extract a subsequence from 𝑋𝑛𝑘ℎ

a.s converging to 𝑋

iii) Prove that 𝑋𝑛 → 𝑋 in probability implies 𝑋𝑛 → 𝑋 in distribution.

iv) Show that if 𝑋𝑛 → 𝑋 in distribution, then lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥) for all 𝑥 such that 𝐹 is continuous
Hint. Let 𝜖 > 0 and show that for all 𝑛 ⩾ 1

𝐹(𝑥 − 𝜖) − 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) ⩽ 𝐹𝑛(𝑥) ⩽ 𝐹(𝑥 + 𝜖) + 𝑃(|𝑋𝑛 − 𝑋| > 𝜖).

v) By providing a counterexample show that 𝑋𝑛 → 𝑋 in probability does not imply 𝑋𝑛 → 𝑋 in L2.

vi) By providing a counterexample show that 𝑋𝑛 → 𝑋 in distribution does not imply 𝑋𝑛 → 𝑋 in probability.

Exercise 5.
Let (𝛺, ℱ, 𝑃) be a probability space and {𝑋𝑛}𝑛 a sequence of R𝑑-valued random variables with Gaussian

distribution 𝜇𝑋𝑛
= 𝒩(𝑚𝑛, 𝛴𝑛) on (R𝑑, ℬ(R𝑑)) for all 𝑛.

i) Show that if 𝑚𝑛 → 𝑚 and 𝛴𝑛 → 𝛴 for 𝑛 → ∞, then 𝑋𝑛 → 𝑋 in distribution, where 𝑋 has distribution
𝒩(𝑚, 𝛴).

ii) Show that if 𝑋𝑛 → 𝑋 in 𝐿2, then 𝜇𝑋 is Gaussian.

iii) Show that if 𝑋𝑛 → 𝑋 in distribution, then 𝜇𝑋 is Gaussian.
Hint. Recall that a family of probability measure {𝜇𝑛}𝑛 is called tight if for any 𝜖 > 0, there exists a
compact set 𝐾𝜖 such that for all 𝜇𝑛 one has 𝜇𝑛(𝐾𝜖) > 1 − 𝜖. Moreover, for R𝑑-valued random variables,
one has that a sequence of weakly convergent probability measure is tight (Prokhorov’s Theorem).
Use this information to prove by contradiction that both 𝑚𝑛, 𝛴𝑛 are bounded sequences and contain
converging subsequences.

Remark. If 𝑋∶ 𝛺 → R𝑑 has Gaussian distribution 𝜇𝑋 = 𝒩(𝑚, 𝛴), then its characteristic function is

̂𝜇(𝑡) ∶= E[𝑒𝑖𝑋⊤𝑡] = exp{𝑖𝑚⊤𝑡 − 1
2𝑡⊤𝛴𝑡}, for 𝑡 ∈ R𝑑. (5.1)

Moreover, one has that

• if 𝜇𝑛 ⇀ 𝜇, (equivalently 𝑋𝑛 → 𝑋 in distribution), then ̂𝜇𝑛(𝑡) → ̂𝜇(𝑡), ∀𝑡 ∈ R𝑑

• if ̂𝜇𝑛(𝑡) → 𝜓(𝑡), ∀𝑡 ∈ R𝑑 and 𝜓(𝑡) is continuous at 𝑡 = 0, then 𝜓 is the characteristic function of a
probability distribution 𝜇, and 𝜇𝑛 ⇀ 𝜇.

Exercise 6.
Let (𝛺, ℱ, 𝑃) be a probability space and 𝒢 ⊆ ℱ be a 𝜎-algebra. Let 𝑋, 𝑌∶ 𝛺 → R be integrable random

variables on 𝛺. Using the definition of conditional expectation of random variables given a 𝜎-algebra, prove
the following statements.

i) E(𝑎𝑋 + 𝑏𝑌 |𝒢) = 𝑎E(𝑋|𝒢) + 𝑏E(𝑌 |𝒢) a.s. for 𝑎, 𝑏 ∈ R.

ii) If 𝑋 is 𝒢-measurable then E(𝑋|𝒢) = 𝑋 a.s.
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iii) If 𝑋 is 𝒢-measurable and 𝑋𝑌 is integrable then E(𝑋𝑌 |𝒢) = 𝑋E(𝑌 |𝒢) a.s.

iv) If 𝑋 is independent of 𝒢 then E(𝑋|𝒢) = E(𝑋) a.s.

v) If ℋ is a 𝜎-algebra such that ℋ ⊆ 𝒢 then

E(𝑋|ℋ) = E(E(𝑋|𝒢)∣ℋ) = E(E(𝑋|ℋ)∣𝒢) a.s.

vi) If 𝑋 ⩽ 𝑌 a.s. then E(𝑋|𝒢) ⩽ E(𝑌 |𝒢) a.s.
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