

# Series 1 - September 18, 2024

## Exercise 1.

Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\{F_n\}_{n\geqslant 1}$  be a countable sequence of  $\mathcal{F}$ . Show that:

$$i) \ \ \text{if} \ F_n \subseteq F_{n+1} \ \text{for all} \ n \geqslant 1 \ \text{then} \ P\Big(\bigcup_{n=1}^\infty F_n\Big) = \lim_{n \to \infty} P(F_n),$$

*ii*) if 
$$F_n \supseteq F_{n+1}$$
 for all  $n \geqslant 1$  then  $P\left(\bigcap_{n=1}^{\infty} F_n\right) = \lim_{n \to \infty} P(F_n)$ .

Moreover, show that there exists a sequence  $\{F'_n\}_{n\geqslant 1}$  such that  $F'_i\cap F'_j=\emptyset$  if  $i\neq j$  and

$$\bigcup_{n=1}^{\infty} F_n' = \bigcup_{n=1}^{\infty} F_n.$$

## Exercise 2.

Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\{A_i\}_{i \ge 1}$  be a sequence of events, i.e.,  $A_i \in \mathcal{F}$ .

i) Show that the event  $E = \{\text{"infinitely many } A_i \text{ occur"}\}\$ can be written

$$E = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i.$$

Remark. The set E is often called " $A_i$  i.o.", which means " $A_i$  infinitely often".

- ii) Describe the event  $H = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_i$ .
- iii) Show that if  $\sum_{i=1}^{\infty} P(A_i) < \infty$  then  $P(A_i \text{ i.o.}) = 0$  (Borel–Cantelli lemma).

#### Exercise 3.

Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $X \colon \Omega \to \mathbb{R}^n$  be an n-dimensional random variable. Show that  $\mathcal{F}(X) = \{X^{-1}(B) \colon B \in \mathcal{B}\}$ , where  $\mathcal{B}$  is the Borel  $\sigma$ -algebra on  $\mathbb{R}^n$ , is a  $\sigma$ -algebra. Observe that  $\mathcal{F}(X)$  is the smallest  $\sigma$ -algebra with respect to which X is measurable.

## Exercise 4.

Let  $(\Omega, \mathcal{F}, P)$  be a probability space,  $\{X_n\}_{n\geqslant 1}$  be a sequence of real-valued random variables  $X_n\colon \Omega\to\mathbb{R}$  and  $X\colon \Omega\to\mathbb{R}$  be another real-valued random variable. Denote by  $F_n$  and F the distribution function of  $X_n$  and X, respectively, and recall the following notions of convergence of random variables:

- $X_n \to X$  in L<sup>2</sup> if  $\mathbb{E}[|X_n X|^2] \to 0$  as  $n \to \infty$ ,
- $X_n \to X$  in probability if for all  $\epsilon > 0$  it holds  $P(|X_n X| > \epsilon) \to 0$  as  $n \to \infty$ ,

- $X_n \to X$  in distribution if  $\mathbb{E}[g(X_n)] \to \mathbb{E}[g(X)]$  as  $n \to \infty$ , for any  $g \in C_b^0(\mathbb{R})$ .
- i) Prove that  $X_n \to X$  in  $L^2$  implies  $X_n \to X$  in probability.
- ii) Show that if  $X_n \to X$  in probability, then one can extract a subsequence from  $X_n$  a.s converging to X. Prove also the following implication:  $X_n \to X$  in probability if and only if for every subsequence  $X_{n_k}$  one can extract a subsequence from  $X_{n_{k_1}}$  a.s converging to X
- iii) Prove that  $X_n \to X$  in probability implies  $X_n \to X$  in distribution.
- iv) Show that if  $X_n \to X$  in distribution, then  $\lim_{n\to\infty} F_n(x) = F(x)$  for all x such that F is continuous Hint. Let  $\epsilon > 0$  and show that for all  $n \ge 1$

$$F(x-\epsilon) - P(|X_n - X| > \epsilon) \le F_n(x) \le F(x+\epsilon) + P(|X_n - X| > \epsilon).$$

- v) By providing a counterexample show that  $X_n \to X$  in probability does not imply  $X_n \to X$  in  $L^2$ .
- vi) By providing a counterexample show that  $X_n \to X$  in distribution does not imply  $X_n \to X$  in probability.

# Exercise 5.

Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\{X_n\}_n$  a sequence of  $\mathbb{R}^d$ -valued random variables with Gaussian distribution  $\mu_{X_n} = \mathcal{N}(m_n, \Sigma_n)$  on  $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$  for all n.

- i) Show that if  $m_n \to m$  and  $\Sigma_n \to \Sigma$  for  $n \to \infty$ , then  $X_n \to X$  in distribution, where X has distribution  $\mathcal{N}(m, \Sigma)$ .
- ii) Show that if  $X_n \to X$  in  $L^2$ , then  $\mu_X$  is Gaussian.
- iii) Show that if  $X_n \to X$  in distribution, then  $\mu_X$  is Gaussian.

Hint. Recall that a family of probability measure  $\{\mu_n\}_n$  is called tight if for any  $\epsilon > 0$ , there exists a compact set  $K_{\epsilon}$  such that for all  $\mu_n$  one has  $\mu_n(K_{\epsilon}) > 1 - \epsilon$ . Moreover, for  $\mathbb{R}^d$ -valued random variables, one has that a sequence of weakly convergent probability measure is tight (Prokhorov's Theorem). Use this information to prove by contradiction that both  $m_n, \Sigma_n$  are bounded sequences and contain converging subsequences.

Remark. If  $X: \Omega \to \mathbb{R}^d$  has Gaussian distribution  $\mu_X = \mathcal{N}(m, \Sigma)$ , then its characteristic function is

$$\hat{\mu}(t) := \mathbb{E}[e^{iX^{\top}t}] = \exp\{im^{\top}t - \frac{1}{2}t^{\top}\Sigma t\}, \quad \text{for } t \in \mathbb{R}^d.$$
 (5.1)

Moreover, one has that

- if  $\mu_n \rightharpoonup \mu$ , (equivalently  $X_n \to X$  in distribution), then  $\hat{\mu}_n(t) \to \hat{\mu}(t)$ ,  $\forall t \in \mathbb{R}^d$
- if  $\hat{\mu}_n(t) \to \psi(t)$ ,  $\forall t \in \mathbb{R}^d$  and  $\psi(t)$  is continuous at t = 0, then  $\psi$  is the characteristic function of a probability distribution  $\mu$ , and  $\mu_n \rightharpoonup \mu$ .

# Exercise 6.

Let  $(\Omega, \mathcal{F}, P)$  be a probability space and  $\mathcal{G} \subseteq \mathcal{F}$  be a  $\sigma$ -algebra. Let  $X, Y : \Omega \to \mathbb{R}$  be integrable random variables on  $\Omega$ . Using the definition of conditional expectation of random variables given a  $\sigma$ -algebra, prove the following statements.

- i)  $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$  a.s. for  $a, b \in \mathbb{R}$ .
- ii) If X is  $\mathcal{G}$ -measurable then  $\mathbb{E}(X|\mathcal{G}) = X$  a.s.

- iii) If X is  $\mathcal{G}$ -measurable and XY is integrable then  $\mathbb{E}(XY|\mathcal{G})=X\mathbb{E}(Y|\mathcal{G})$  a.s.
- $\mathit{iv}) \ \ \text{If} \ X \ \text{is independent of} \ \mathcal{G} \ \text{then} \ \mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X) \ \text{a.s.}$
- v) If  $\mathcal H$  is a  $\sigma\text{-algebra}$  such that  $\mathcal H\subseteq\mathcal G$  then

$$\mathbb{E}(X|\mathcal{H}) = \mathbb{E}\big(\mathbb{E}(X|\mathcal{G})\big|\mathcal{H}\big) = \mathbb{E}\big(\mathbb{E}(X|\mathcal{H})\big|\mathcal{G}\big) \text{ a.s.}$$

vi) If  $X \leqslant Y$  a.s. then  $\mathbb{E}(X|\mathcal{G}) \leqslant \mathbb{E}(Y|\mathcal{G})$  a.s.