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Exercise 1.
Let (𝛺, ℱ, 𝑃) be a probability space
and {𝐹𝑛}𝑛⩾1 be a countable sequence of ℱ. Show that:

i) if 𝐹𝑛 ⊆ 𝐹𝑛+1 for all 𝑛 ⩾ 1 then 𝑃(
∞

⋃
𝑛=1

𝐹𝑛) = lim
𝑛→∞

𝑃(𝐹𝑛),

ii) if 𝐹𝑛 ⊇ 𝐹𝑛+1 for all 𝑛 ⩾ 1 then 𝑃(
∞

⋂
𝑛=1

𝐹𝑛) = lim
𝑛→∞

𝑃(𝐹𝑛).

Moreover, show that there exists a sequence {𝐹 ′
𝑛}𝑛⩾1 such that 𝐹 ′

𝑖 ∩ 𝐹 ′
𝑗 = ∅ if 𝑖 ≠ 𝑗 and

∞

⋃
𝑛=1

𝐹 ′
𝑛 =

∞

⋃
𝑛=1

𝐹𝑛.

Solution
Consider the sequence of events 𝐴𝑛 defined by 𝐴1 = 𝐹1 and 𝐴𝑛 = 𝐹𝑛 ⧵ 𝐹𝑛−1. Then by the axioms of

probability

𝑃(
∞

⋃
𝑛=1

𝐹𝑛) = 𝑃(
∞

⋃
𝑛=1

𝐴𝑛) =
∞

∑
𝑛=1

𝑃(𝐴𝑛) = lim
𝑁→∞

𝑁

∑
𝑛=1

𝑃(𝐴𝑛) = lim
𝑁→∞

𝑃(
𝑁

⋃
𝑛=1

𝐴𝑛)

= lim
𝑁→∞

𝑃(
𝑁

⋃
𝑛=1

𝐹𝑛) = lim
𝑁→∞

𝑃(𝐹𝑁).

The same result can be obtained for (ii) thanks to

𝑃(
∞

⋂
𝑛=1

𝐹𝑛) = 1 − 𝑃(
∞

⋃
𝑛=1

𝐹 𝑐
𝑛),

and then proceeding as in (i). Now let {𝐹𝑛}𝑛⩾1 be a sequence of ℱ. Define the sequence {𝐹 ′
𝑛}𝑛⩾1 as

𝐹 ′
1 = 𝐹1, 𝐹 ′

𝑛 = 𝐹𝑛 ∩ ( ∪𝑛−1
𝑘=1 𝐹𝑘)𝑐 𝑛 ⩾ 2.

By induction we show that ∪𝑚
𝑛=1𝐹 ′

𝑛 = ⋃𝑚
𝑛=1 𝐹𝑛 for all 𝑚 ⩾ 1. The case 𝑚 = 1 follows from the definition of

𝐹 ′
1. Then, due to the induction step we have

∪𝑚
𝑛=1𝐹 ′

𝑛 = ( ∪𝑚−1
𝑛=1 𝐹 ′

𝑛) ∪ 𝐹 ′
𝑚 = ( ∪𝑚−1

𝑛=1 𝐹𝑛) ∪ (𝐹𝑚 ∩ ( ∪𝑚−1
𝑛=1 𝐹𝑛)𝑐) = ∪𝑚

𝑛=1𝐹𝑛,

where we employed the associativity

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶). (1.1)

Now, if 𝑖 < 𝑗 we can write 𝐹 ′
𝑗 = 𝐹𝑗 ∩ ( ∪𝑗−1

𝑘=1 𝐹 ′
𝑘)𝑐 and since clearly 𝐹 ′

𝑖 ⊂ ∪𝑗−1
𝑘=1𝐹 ′

𝑘 we have 𝐹 ′
𝑖 ∩ 𝐹 ′

𝑗 = ∅. The
argument is analogous if 𝑖 > 𝑗.

Exercise 2.
Let (𝛺, ℱ, 𝑃) be a probability space and {𝐴𝑖}𝑖⩾1 be a sequence of events, i.e., 𝐴𝑖 ∈ ℱ.
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i) Show that the event 𝐸 = {“infinitely many 𝐴𝑖 occur”} can be written

𝐸 =
∞

⋂
𝑛=1

∞

⋃
𝑖=𝑛

𝐴𝑖.

Remark. The set 𝐸 is often called “𝐴𝑖 i.o.”, which means “𝐴𝑖 infinitely often”.

ii) Describe the event 𝐻 = ⋃∞
𝑛=1 ⋂∞

𝑖=𝑛 𝐴𝑖.

iii) Show that if ∑∞
𝑖=1 𝑃(𝐴𝑖) < ∞ then 𝑃(𝐴𝑖 i.o.) = 0 (Borel–Cantelli lemma).

Solution

i) Set 𝐹𝑛 = ∪∞
𝑖=𝑛𝐴𝑖. If 𝐹𝑛 occurs, there are some 𝐴𝑖 𝑖 ⩾ 𝑛 that occur. If 𝐸 occurs, it means that the 𝐹𝑛

occur for all 𝑛 ⩾ 1, as 𝐸 = ∩∞
𝑛=1𝐹𝑛. But if 𝐹𝑛 occurs for all 𝑛, it means that infinitely many 𝐴𝑖 occur.

Reciprocally, if infinitely many 𝐴𝑖 occur, then 𝐹𝑛 occur for all 𝑛 ⩾ 1 and then 𝐸 occurs. We write this
as

𝜔 ∈ 𝐸 ⟺ 𝜔 ∈ 𝐹𝑛 ∀𝑛 ⩾ 1
⟺ ∀𝑛 ⩾ 1 ∃ 𝑖𝑛 ⩾ 𝑛 s.t. 𝜔 ∈ 𝐴𝑖𝑛

⟺ |{𝑖 s.t. 𝜔 ∈ 𝐴𝑖}| = ∞.
(2.1)

ii) Set 𝐺𝑛 = ∩∞
𝑖=𝑛𝐴𝑖. If 𝐺𝑛 occurs, all 𝐴𝑖 occur for 𝑖 ⩾ 𝑛. If 𝐻 = ∪∞

𝑛=1𝐺𝑛 occurs, there exists a 𝑛 such
that for 𝑖 ⩾ 𝑛 𝐴𝑖 occur. Consequently, 𝐻 = {∃𝑛 ⩾ 1 ∶ all 𝐴𝑖 occur for 𝑖 ⩾ 𝑛}. We write this as

𝜔 ∈ 𝐻 ⟺ ∃ 𝑛 ⩾ 1 s.t. 𝜔 ∈ 𝐺𝑛

⟺ ∃ 𝑛 ⩾ 1 s.t. 𝜔 ∈ 𝐴𝑖 ∀𝑖 ⩾ 𝑛.
(2.2)

iii) We have to show that 𝑃(𝐸) = 0. Note that 𝐹𝑛 = ∪∞
𝑖=𝑛𝐴𝑖 satisfies 𝐹𝑛 ⊇ 𝐹𝑛+1. From Exercise , we have

𝑃(𝐸) = lim
𝑛→∞

𝑃(𝐹𝑛) = lim
𝑛→∞

𝑃(∪∞
𝑖=𝑛𝐴𝑖).

Furthermore, 𝑃(∪∞
𝑖=𝑛𝐴𝑖) ⩽ ∑∞

𝑖=𝑛 𝑃(𝐴𝑖) and as we assume ∑∞
𝑖=1 𝑃(𝐴𝑖) < ∞, we conclude that

lim𝑛→∞ 𝑃(∪∞
𝑖=𝑛𝐴𝑖) = 0 and 𝑃(𝐸) = 0.

Exercise 3.
Let (𝛺, ℱ, 𝑃) be a probability space and 𝑋∶ 𝛺 → R𝑛 be an 𝑛-dimensional random variable. Show that

ℱ(𝑋) = {𝑋−1(𝐵)∶ 𝐵 ∈ ℬ}, where ℬ is the Borel 𝜎-algebra on R𝑛, is a 𝜎-algebra. Observe that ℱ(𝑋) is the
smallest 𝜎-algebra with respect to which 𝑋 is measurable.

Solution
We check the properties of a 𝜎-algebra.

i) 𝛺 = 𝑋−1(R𝑛) and as R𝑛 ∈ ℬ then 𝛺 ∈ ℱ(𝑋).
ii) Let 𝐹 ∈ ℱ(𝑋). Then there exists 𝐵 ∈ ℬ such that 𝐹 = 𝑋−1(𝐵). Hence

𝐹 𝑐 = (𝑋−1(𝐵))𝑐 = {𝜔 ∈ 𝛺 ∶ 𝑋(𝜔) ∉ 𝐵} = {𝜔 ∈ 𝛺 ∶ 𝑋(𝜔) ∈ 𝐵𝑐} = 𝑋−1(𝐵𝑐),

and as 𝐵𝑐 ∈ ℬ then 𝐹 𝑐 ∈ ℱ(𝑋).
iii) Let {𝐹𝑖}𝑖⩾1 ⊂ ℱ(𝑋). Then there exist {𝐵𝑖}𝑖⩾1 ⊂ ℬ such that 𝐹𝑖 = 𝑋−1(𝐵𝑖) for all 𝑖 ⩾ 1. Then

∪𝑖𝐹𝑖 = ∪𝑖{𝜔 ∈ 𝛺 ∶ 𝑋(𝜔) ∈ 𝐵𝑖} = {𝜔 ∈ 𝛺 ∶ 𝑋(𝜔) ∈ ∪𝑖𝐵𝑖} = 𝑋−1(∪𝑖𝐵𝑖),

and as ∪𝑖𝐵𝑖 ∈ ℬ then ∪𝑖𝐹𝑖 ∈ ℱ(𝑋).
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Exercise 4.
Let (𝛺, ℱ, 𝑃) be a probability space, {𝑋𝑛}𝑛⩾1 be a sequence of real-valued random variables 𝑋𝑛 ∶ 𝛺 → R

and 𝑋∶ 𝛺 → R be another real-valued random variable. Denote by 𝐹𝑛 and 𝐹 the distribution function of 𝑋𝑛
and 𝑋, respectively, and recall the following notions of convergence of random variables:

• 𝑋𝑛 → 𝑋 in L2 if E[|𝑋𝑛 − 𝑋|2] → 0 as 𝑛 → ∞,

• 𝑋𝑛 → 𝑋 in probability if for all 𝜖 > 0 it holds 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) → 0 as 𝑛 → ∞,

• 𝑋𝑛 → 𝑋 in distribution if E[𝑔(𝑋𝑛)] → E[𝑔(𝑋)] as 𝑛 → ∞, for any 𝑔 ∈ 𝐶0
𝑏 (R).

i) Prove that 𝑋𝑛 → 𝑋 in L2 implies 𝑋𝑛 → 𝑋 in probability.

ii) Show that if 𝑋𝑛 → 𝑋 in probability, then one can extract a subsequence from 𝑋𝑛 a.s converging to 𝑋.
Prove also the following implication: 𝑋𝑛 → 𝑋 in probability if and only if for every subsequence 𝑋𝑛𝑘
one can extract a subsequence from 𝑋𝑛𝑘ℎ

a.s converging to 𝑋

iii) Prove that 𝑋𝑛 → 𝑋 in probability implies 𝑋𝑛 → 𝑋 in distribution.

iv) Show that if 𝑋𝑛 → 𝑋 in distribution, then lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥) for all 𝑥 such that 𝐹 is continuous
Hint. Let 𝜖 > 0 and show that for all 𝑛 ⩾ 1

𝐹(𝑥 − 𝜖) − 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) ⩽ 𝐹𝑛(𝑥) ⩽ 𝐹(𝑥 + 𝜖) + 𝑃(|𝑋𝑛 − 𝑋| > 𝜖).

v) By providing a counterexample show that 𝑋𝑛 → 𝑋 in probability does not imply 𝑋𝑛 → 𝑋 in L2.

vi) By providing a counterexample show that 𝑋𝑛 → 𝑋 in distribution does not imply 𝑋𝑛 → 𝑋 in probability.

Solution

i) Fix 𝜖 > 0. Using Markov’s inequality, we have

𝑃(|𝑋𝑛 − 𝑋| > 𝜖) = 𝑃(|𝑋𝑛 − 𝑋|2 > 𝜖2) ⩽ 1
𝜖2E[|𝑋𝑛 − 𝑋|2] → 0.

ii) Via the property of convergence in probability, one has that for all 𝑘 ⩾ 1, there exists 𝑛̄ such that for
all 𝑛 > 𝑛̄ one has 𝑃(|𝑋𝑛 − 𝑋| > 1

𝑘
) ⩽ 2−𝑘. Therefore, one can extract a subsquence (𝑋𝑛𝑘

)𝑘 such that

𝑃(|𝑋𝑛𝑘
− 𝑋| > 1

𝑘
) ⩽ 2−𝑘 for all 𝑘. Applying Borel-Cantelli’s lemma, one gets the thesis.

For the second part of the claim, if 𝑋𝑛 → 𝑋 in probability, then thanks to properties of convergent
sequences any arbitrary subsequence 𝑋𝑛𝑘

of 𝑋𝑛 converges in probability to 𝑋 and, therefore, one can
extract a subsequence 𝑋𝑛𝑘ℎ

of 𝑋𝑛𝑘
converging a.s. to 𝑋. On the contrary, suppose by contradiction

that 𝑋𝑛 ⇏ 𝑋. Then, by definition there exists 𝜀 and 𝛿 > 0 and a subsequence 𝑋𝑛𝑘
, such that

𝑃(|𝑋𝑛𝑘
− 𝑋| > 𝜀) ⩾ 𝛿 for all 𝑘. But from 𝑋𝑛𝑘

we cannot chose an a.s. convergent subsequence to 𝑋,
which is impossible by hypothesis.

iii) According to point (𝑖𝑖), we have that if 𝑋𝑛 → 𝑋 in probability, then for every subsequence 𝑋𝑛𝑘
we can

subtract an a.s subsequence 𝑋𝑛𝑘ℎ
convergent to 𝑋. For any arbitrary continuous function 𝑔, we have that

𝑔(𝑋𝑛𝑘ℎ
) converges a.s. to 𝑔(𝑋). Therefore, for the same point 𝑖𝑖), 𝑔(𝑋𝑛) converges in probability to 𝑔(𝑋).

Then, by boundness and continuity of any 𝑔 ∈ 𝐶0
𝑏 (R) and defining 𝐴𝑛 = {𝜔 ∶ |𝑔(𝑋𝑛) − 𝑔(𝑋)| < 𝜀

2
}, for

large 𝑛 one has

|E[𝑔(𝑋𝑛)] − E[𝑔(𝑋)]| ⩽ E[|𝑔(𝑋𝑛) − 𝑔(𝑋)|]

⩽ 𝜀
2𝑃(𝐴𝑛) + ‖𝑔‖∞𝑃(𝐴𝐶

𝑛 ) ⩽ 𝜀
2 ⋅ 1 + ‖𝑔‖∞

𝜀
2‖𝑔‖∞

= 𝜀, ∀𝑔 ∈ 𝐶0
𝑏 (R), (4.1)

where in the last line we use the convergence in probability. Via arbitrariness of 𝜀 we obtain the thesis.

3



iv) Fix 𝜖 > 0 and let 𝑥 be a point where 𝐹 is continuous. Then

𝐹𝑛(𝑥) = 𝑃(𝑋𝑛 ⩽ 𝑥)
= 𝑃(𝑋𝑛 ⩽ 𝑥, |𝑋𝑛 − 𝑋| > 𝜖) + 𝑃(𝑋𝑛 ⩽ 𝑥, |𝑋𝑛 − 𝑋| ⩽ 𝜖)
⩽ 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) + 𝑃(𝑋 ⩽ 𝑥 + 𝜖)
= 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) + 𝐹(𝑥 + 𝜖),

(4.2)

and
𝐹(𝑥 − 𝜖) = 𝑃(𝑋 ⩽ 𝑥 − 𝜖)

= 𝑃(𝑋 ⩽ 𝑥 − 𝜖, |𝑋𝑛 − 𝑋| > 𝜖) + 𝑃(𝑋 ⩽ 𝑥 − 𝜖, |𝑋𝑛 − 𝑋| ⩽ 𝜖)
⩽ 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) + 𝑃(𝑋𝑛 ⩽ 𝑥)
= 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) + 𝐹𝑛(𝑥).

Therefore, for all 𝑛 ⩾ 1

𝐹(𝑥 − 𝜖) − 𝑃(|𝑋𝑛 − 𝑋| > 𝜖) ⩽ 𝐹𝑛(𝑥) ⩽ 𝐹(𝑥 + 𝜖) + 𝑃(|𝑋𝑛 − 𝑋| > 𝜖). (4.3)

Hence, taking the limit as 𝑛 → ∞ and by convergence in probability we have

𝐹(𝑥 − 𝜖) ⩽ lim inf
𝑛→∞

𝐹𝑛(𝑥) ⩽ lim sup
𝑛→∞

𝐹𝑛(𝑥) ⩽ 𝐹(𝑥 + 𝜖).

Since 𝐹 is continuous in 𝑥, lim𝜖→0 𝐹(𝑥 − 𝜖) = lim𝜖→0 𝐹(𝑥 + 𝜖) = 𝐹(𝑥), so taking the limit 𝜖 → 0 in (4.3)
shows that lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥).

v) Consider 𝑈 ∼ Unif(0, 1) and 𝑋𝑛 =
√

𝑛𝜒[0,1/𝑛](𝑈). We have

𝑃(|𝑋𝑛 − 0| > 𝜖) = 𝑃(
√

𝑛𝜒[0,1/𝑛](𝑈) > 𝜖) = 𝑃(𝜒[0,1/𝑛](𝑈) > 𝜖/
√

𝑛)

⩽ 𝑃(𝜒[0,1/𝑛](𝑈) > 0) = 𝑃(0 ⩽ 𝑈 ⩽ 1/𝑛) = 1
𝑛 → 0,

hence 𝑋𝑛 → 0 in probability but E(|𝑋𝑛 − 0|2) = ∫1/𝑛
0 𝑛 = 1 for all 𝑛 ⩾ 1, so 𝑋𝑛 does not converge to 0

in L2.

vi) Let 𝑋 ∼ 𝑁(0, 1), 𝑋𝑛 = −𝑋 for all 𝑛 ⩾ 1. Then 𝑋𝑛 is 𝑁(0, 1) and hence 𝐹𝑛(𝑥) = 𝐹(𝑥) for all 𝑛 ⩾ 1,
but

𝑃(|𝑋𝑛 − 𝑋| > 𝜖) = 𝑃(2|𝑋| > 𝜖) = 2
√

2𝜋
∫

∞

𝜖/2
𝑒− 𝑠2

2 ≠ 0.

Exercise 5.
Let (𝛺, ℱ, 𝑃) be a probability space and {𝑋𝑛}𝑛 a sequence of R𝑑-valued random variables with Gaussian

distribution 𝜇𝑋𝑛
= 𝒩(𝑚𝑛, 𝛴𝑛) on (R𝑑, ℬ(R𝑑)) for all 𝑛.

i) Show that if 𝑚𝑛 → 𝑚 and 𝛴𝑛 → 𝛴 for 𝑛 → ∞, then 𝑋𝑛 → 𝑋 in distribution, where 𝑋 has distribution
𝒩(𝑚, 𝛴).

ii) Show that if 𝑋𝑛 → 𝑋 in 𝐿2, then 𝜇𝑋 is Gaussian.

iii) Show that if 𝑋𝑛 → 𝑋 in distribution, then 𝜇𝑋 is Gaussian.
Hint. Recall that a family of probability measure {𝜇𝑛}𝑛 is called tight if for any 𝜖 > 0, there exists a
compact set 𝐾𝜖 such that for all 𝜇𝑛 one has 𝜇𝑛(𝐾𝜖) > 1 − 𝜖. Moreover, for R𝑑-valued random variables,
one has that a sequence of weakly convergent probability measure is tight (Prokhorov’s Theorem).
Use this information to prove by contradiction that both 𝑚𝑛, 𝛴𝑛 are bounded sequences and contain
converging subsequences.
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Remark. If 𝑋∶ 𝛺 → R𝑑 has Gaussian distribution 𝜇𝑋 = 𝒩(𝑚, 𝛴), then its characteristic function is

̂𝜇(𝑡) ∶= E[𝑒𝑖𝑋⊤𝑡] = exp{𝑖𝑚⊤𝑡 − 1
2𝑡⊤𝛴𝑡}, for 𝑡 ∈ R𝑑. (5.1)

Moreover, one has that

• if 𝜇𝑛 ⇀ 𝜇, (equivalently 𝑋𝑛 → 𝑋 in distribution), then ̂𝜇𝑛(𝑡) → ̂𝜇(𝑡), ∀𝑡 ∈ R𝑑

• if ̂𝜇𝑛(𝑡) → 𝜓(𝑡), ∀𝑡 ∈ R𝑑 and 𝜓(𝑡) is continuous at 𝑡 = 0, then 𝜓 is the characteristic function of a
probability distribution 𝜇, and 𝜇𝑛 ⇀ 𝜇.

Solution

i) 𝜇𝑋𝑛
= 𝒩(𝑚𝑛, 𝛴𝑛) implies ̂𝜇𝑛(𝑡) = 𝑒𝑖𝑚⊤

𝑛𝑡− 1
2

𝑡⊤𝛴𝑛𝑡. Clearly, if 𝑛 → +∞, then ̂𝜇𝑛(𝑡) → ̂𝜇(𝑡) ∶= E[𝑒𝑖𝑋⊤𝑡] =
exp{𝑖𝑚⊤𝑡 − 1

2
𝑡⊤𝛴𝑡}, for all 𝑡 ∈ R𝑑. Moreover, ̂𝜇(𝑡) is continuous at zero and corresponds to the

characteristic function of a random variable 𝑋 with distribution 𝒩(𝑚, 𝛴), hence 𝜇𝑋𝑛
⇀ 𝒩(𝑚, 𝛴) ⟺

𝑋𝑛 → 𝑋 in distribution.

ii) Since 𝑋𝑛 → 𝑋 in 𝐿2 we have

𝑚𝑛 ∶= E[𝑋𝑛] → E[𝑋] =∶ 𝑚
𝛴𝑛 ∶= E[(𝑋𝑛 − E[𝑋𝑛])(𝑋𝑛 − E[𝑋𝑛])⊤] → Cov(𝑋) =∶ 𝛴

(5.2)

Moreover, since 𝑥 → 𝑒𝑖𝑥 is Lipschitz, then

∣E[𝑒𝑖𝑋⊤𝑡 − 𝑒𝑖𝑋⊤
𝑛𝑡]∣ ⩽ E[∣(𝑋 − 𝑋𝑛)⊤𝑡∣] ⩽ |𝑡|‖𝑋 − 𝑋𝑛‖𝐿2 → +∞, 𝑛 → +∞. (5.3)

Hence
̂𝜇(𝑡) ∶= E[𝑒𝑖𝑋⊤𝑡] = lim

𝑛→+∞
E[𝑒𝑖𝑋⊤

𝑛𝑡] = exp{𝑖𝑚⊤
𝑛𝑡 − 1

2𝑡⊤𝛴𝑛𝑡} = exp{𝑖𝑚⊤𝑡 − 1
2𝑡⊤𝛴𝑡}, (5.4)

and 𝑋 has Gaussian distribution 𝒩(𝑚, 𝛴).

iii) By contradiction, suppose sup𝑛 |𝑚𝑛| = +∞. Then, for all 𝑀 > 0, there exists 𝑛̂, such that for all 𝑛 ⩾ 𝑛̂
one has |𝑚𝑛| ⩾ 𝑀. Since for a Gaussian measure 𝒩(𝑚𝑛, 𝛴𝑛) one has P(|𝑋𝑛| > |𝑚𝑛|) ⩾ 1

2
, we conclude

that P(|𝑋𝑛| > 𝑀) ⩾ 1
2
. But this fact contradicts tightness, hence sup𝑛 |𝑚𝑛| < +∞. One can prove

sup𝑛 |𝛴𝑛| < +∞ in a similar way. As both sequences 𝑚𝑛, 𝛴𝑛 are bounded, one can extract convergent
subsequences 𝑚𝑛𝑘

, 𝛴𝑛𝑘
and called their limit 𝑚, 𝛴, respectively. Since 𝑋𝑛 is converging in distribution

to 𝑋, it follow that for all 𝑡

E[𝑒𝑖𝑋⊤𝑡] = lim
𝑛→+∞

E[𝑒𝑖𝑋⊤
𝑛𝑡] = lim

𝑛𝑘→+∞
E[𝑒𝑖𝑋⊤

𝑛𝑘𝑡] = exp{𝑖𝑚⊤𝑡 − 1
2𝑡⊤𝛴𝑡}, (5.5)

hence 𝑋 ∼ 𝒩(𝑚, 𝛴).

Exercise 6.
Let (𝛺, ℱ, 𝑃) be a probability space and 𝒢 ⊆ ℱ be a 𝜎-algebra. Let 𝑋, 𝑌∶ 𝛺 → R be integrable random

variables on 𝛺. Using the definition of conditional expectation of random variables given a 𝜎-algebra, prove
the following statements.

i) E(𝑎𝑋 + 𝑏𝑌 |𝒢) = 𝑎E(𝑋|𝒢) + 𝑏E(𝑌 |𝒢) a.s. for 𝑎, 𝑏 ∈ R.

ii) If 𝑋 is 𝒢-measurable then E(𝑋|𝒢) = 𝑋 a.s.

iii) If 𝑋 is 𝒢-measurable and 𝑋𝑌 is integrable then E(𝑋𝑌 |𝒢) = 𝑋E(𝑌 |𝒢) a.s.
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iv) If 𝑋 is independent of 𝒢 then E(𝑋|𝒢) = E(𝑋) a.s.

v) If ℋ is a 𝜎-algebra such that ℋ ⊆ 𝒢 then

E(𝑋|ℋ) = E(E(𝑋|𝒢)∣ℋ) = E(E(𝑋|ℋ)∣𝒢) a.s.

vi) If 𝑋 ⩽ 𝑌 a.s. then E(𝑋|𝒢) ⩽ E(𝑌 |𝒢) a.s.

Solution

i) It is clear that 𝑍 = 𝑎E(𝑋|𝒢) + 𝑏E(𝑌 |𝒢) is 𝒢-measurable. Moreover, using the definition of conditional
expectation, 𝑍 satisfies for any 𝐴 ∈ 𝒢

∫
𝐴

𝑍 𝑃 = 𝑎 ∫
𝐴

𝑋 𝑃 + 𝑏 ∫
𝐴

𝑌 𝑃 = ∫
𝐴

𝑎𝑋 + 𝑏𝑌 𝑃.

Hence, we conclude that 𝑍 = E(𝑎𝑋 + 𝑏𝑌 |𝒢) by the uniqueness of the conditional expectation.

ii) 𝑍 = 𝑋 satisfies the two conditions of the definition of E(𝑋|𝒢), hence 𝑍 = E(𝑋|𝒢) by uniqueness.

iii) Note that as 𝑋 is 𝒢-measurable, 𝑍 = 𝑋E(𝑌 |𝒢) is 𝒢-measurable. We prove the result for a simple
function 𝑋 = ∑𝑛

𝑖=1 𝑔𝑖𝜒𝐺𝑖
, where {𝐺𝑖} ⊂ 𝒢. Note that for 𝐴 ∈ 𝒢,

∫
𝐴

𝑍 𝑃 =
𝑛

∑
𝑖=1

𝑔𝑖 ∫
𝐴∩𝐺𝑖

E(𝑌 |𝒢) 𝑃 =
𝑛

∑
𝑖=1

𝑔𝑖 ∫
𝐴∩𝐺𝑖

𝑌 𝑃 = ∫
𝐴

𝑋𝑌 𝑃,

and we conclude that 𝑍 = E(𝑋𝑌 |𝒢). The general result is then obtained by approximation with simple
functions, applying the monotone convergence theorem and considering the positive and negative parts.

iv) For 𝑍 = E(𝑋) and 𝐴 ∈ 𝒢, using the independence we have

∫
𝐴

𝑍 𝑃 = E(𝑋)𝑃(𝐴) = E(𝑋)E(𝜒𝐴) = E(𝑋𝜒𝐴) = ∫
𝐴

𝑋 𝑃,

and therefore 𝑍 = E(𝑋|𝒢).

v) First note that as ℋ ⊂ 𝒢 𝑍 = E(𝑋|ℋ) is 𝒢-measurable. Using ii), it is clear that E(E(𝑋|ℋ)∣𝒢) =
E(𝑋|ℋ). Now, for any 𝐴 ∈ ℋ it holds ∫𝐴 𝑍 𝑃 = ∫𝐴 𝑋 𝑃 = ∫𝐴 E(𝑋|𝒢) 𝑃, because also 𝐴 ∈ 𝒢. We
conclude that 𝑍 = E(E(𝑋|𝒢)∣ℋ).

vi) We prove it by contradiction. Consider the event 𝐴 = {E(𝑋 ∣ 𝒢) > E(𝑌 ∣ 𝒢)} ∈ 𝒢. Then, by 𝑖) we
rewrite 𝐴 = {E(𝑋 −𝑌 ∣ 𝒢) > 0}. Assume by contradiction that 𝑃(𝐴) > 0 and denote 𝑍 = E(𝑋 −𝑌 ∣ 𝒢).
Then, clearly

∫
𝐴

𝑍𝑃 > 0.

On the other hand, since 𝑋 ⩽ 𝑌 a.s. and by definition of conditional expectation,

∫
𝐴

𝑍𝑃 = ∫
𝐴

𝑋 − 𝑌 𝑃 ⩽ 0,

which gives a contradiction. Hence 𝑃(𝐴) = 0 and E(𝑋 ∣ 𝒢) ⩽ E(𝑌 ∣ 𝒢) a.s.
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