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Exercise 1.

Let (2,7, P) be a probability space
and {F,,},>; be a countable sequence of F. Show that:

n—oo

i) if F,, C F,,, for all n > 1 then P( U Fn) — lim P(F,),
n=1

n—oo

i) if £, D F, ., for all m > 1 then P( N Fn> = lim P(F,).
n=1

Moreover, show that there exists a sequence {F},},,~1 such that F/ N F] = @ if i # j and
o0 oo
U F,=JF.
n=1 n=1

Solution

Consider the sequence of events A,, defined by A; = F} and A,, = F,, \ F,,_;. Then by the axioms of
probability

[e%S) ) 00 N N
n=1 n=1 n=1 n=1 n=1

The same result can be obtained for (ii) thanks to

P(()F,)=1-P( Fp),
n=1 n=1

and then proceeding as in (i). Now let {F},},~; be a sequence of F. Define the sequence {F},},~; as
Fl=F, F,=F,n(UZlF) n>2

By induction we show that U’ | F) = U:L:l F,, for all m > 1. The case m = 1 follows from the definition of
F}. Then, due to the induction step we have

Upy Fyy = (U F) U Fp, = (U F,) U (Fy N (URSE FL)°) = Uny By,
where we employed the associativity
AU(BNC)=(AUuB)N(AUQO). (1.1)

Now, if i < j we can write F} = F; N (Uj_; F{)" and since clearly F} C Uj_ F} we have F/ N F} = @. The
argument is analogous if 7 > j.

Exercise 2.
Let (£2,F, P) be a probability space and {4;};-; be a sequence of events, i.e., 4, € F.



i) Show that the event E = {“infinitely many A; occur”} can be written

o0

Remark. The set E is often called “A; i.0.”, which means “A; infinitely often”.
ii) Describe the event H = [J7° (72 A;.

ii7) Show that if Zzl P(A;) < oo then P(A; i.0.) =0 (Borel-Cantelli lemma).

Solution

i) Set F,, = UX, A,. If F,, occurs, there are some A; i > n that occur. If E occurs, it means that the F),

occur for all n > 1, as £ = Ny, F,,. But if F,, occurs for all n, it means that infinitely many A; occur.

Reciprocally, if infinitely many A; occur, then F,, occur for all n > 1 and then E occurs. We write this
as
weFE <= weF,Vn>1

<= Vn>13i,>nst. weA,; (2.1)
<= [{ist. we A} =o0.

it) Set G,, = N2, A;. If G, occurs, all A; occur for i > n. If H = U2, G,, occurs, there exists a n such

that for ¢ > n A; occur. Consequently, H = {3n > 1: all A; occur for i > n}. We write this as

weEH < In>1st. wed,

. (2.2)
<~ dn>1st. we A Vi>n.

#11) We have to show that P(E) = 0. Note that F,, = U2, A, satisfies F,, DO F,, ;. From Exercise , we have

P(E) = lim P(F,) = lim P(UZ,A;).

n—oo n—oo

Furthermore, P(U2, A;) < Zzn P(A;) and as we assume Zzl P(A;) < oo, we conclude that
lim,, o, P(U2,A;) =0and P(E)=0.

Exercise 3.

Let (2,5, P) be a probability space and X: {2 — R™ be an n-dimensional random variable. Show that
F(X)={X"YB): B € B}, where B is the Borel o-algebra on R", is a o-algebra. Observe that F(X) is the
smallest o-algebra with respect to which X is measurable.

Solution
We check the properties of a o-algebra.

i) 2= X"1R") and as R" € B then 2 € F(X).
ii) Let F' € F(X). Then there exists B € B such that F = X!(B). Hence

Fe=(X"'B) ' ={weR:X(w) ¢ B} ={we N: X(w) € B} = X 1(B°),

and as B¢ € B then F° € F(X).
ZZZ) Let {FZ}’L>1 C ?(X) Then there exist {B2}121 C B such that P’Z = X_l(Bl) for all 4 > 1. Then

and as U;B; € B then U, F; € F(X).



Exercise 4.

Let (£2,7, P) be a probability space, {X,, },~1 be a sequence of real-valued random variables X, : 2 — R
and X: {2 — R be another real-valued random variable. Denote by F,, and F'the distribution function of X,
and X, respectively, and recall the following notions of convergence of random variables:

e X, = Xin LZifE[|X, — X|?)] = 0 as n — oo,

e X, — X in probability if for all e > 0 it holds P(|X,, — X| >¢€) — 0 as n — oo,
e X, — X in distribution if E[g(X,,)] — E[g(X)] as n — oo, for any g € CP(R).
i) Prove that X,, — X in L? implies X,, — X in probability.

1) Show that if X,, — X in probability, then one can extract a subsequence from X,, a.s converging to X.
Prove also the following implication: X,, — X in probability if and only if for every subsequence X,
one can extract a subsequence from Xnk} a.s converging to X

i1i) Prove that X,, — X in probability implies X,, — X in distribution.

iv) Show that if X,, — X in distribution, then lim,,_, . F, (z) = F(z) for all  such that F is continuous

Hint. Let € > 0 and show that for alln > 1

Flx—e)—P(|X,—X|>¢) < F,(z) < Flx+¢) + P(|X,, — X| > ¢).

v) By providing a counterexample show that X,, — X in probability does not imply X,, — X in L2

vi) By providing a counterexample show that X,, — X in distribution does not imply X,, — X in probability.

Solution

i) Fix ¢ > 0. Using Markov’s inequality, we have
1
P(X,—X|>e¢)=P(|X, - X|*?>¢) < 6_2EHX” - X?] = 0.

it) Via the property of convergence in probability, one has that for all k£ > 1, there exists n such that for
all n > n one has P(|X,, — X| > %) < 277, Therefore, one can extract a subsquence (X, );, such that

P(X,, —X|> %) < 27" for all k. Applying Borel-Cantelli’s lemma, one gets the thesis.

For the second part of the claim, if X,, — X in probability, then thanks to properties of convergent
sequences any arbitrary subsequence X,, of X, converges in probability to X and, therefore, one can
extract a subsequence X"kh of X, converging a.s. to X. On the contrary, suppose by contradiction
that X,, # X. Then, by definition there exists € and § > 0 and a subsequence X, , such that
P(]X,, — X| >¢) > 6 for all k. But from X,, we cannot chose an a.s. convergent subsequence to X,
which is impossible by hypothesis.

ii7) According to point (i), we have that if X,, — X in probability, then for every subsequence X,,, we can
subtract an a.s subsequence X, \, convergent to X. For any arbitrary continuous function g, we have that

9(Xn, )
Then, by boundness and continuity of any g € C2(R) and defining A,, = {w : |g(X,,) — g(X)| < 2}, for
large n one has

[Elg(X,)] — Elg(X)]|

converges a.s. to g(X). Therefore, for the same point i), g(X,,) converges in probability to g(X).

[lg(X,,) — g(X)]]

P(A,) + gl P(AS) (.1

9

<E
g
<z <
2 2

3
L+ lglgr— =5 Vo€ CUR).
o0

where in the last line we use the convergence in probability. Via arbitrariness of € we obtain the thesis.



iv)

)

Fix € > 0 and let = be a point where F'is continuous. Then

< = P<Xn <z
=PX, <=z |X —X|>e)+ P(X,, <z,|X, — X|<¢) (4.2)
<PX,—X|>e)+P(X<x+e)
— P(X, = X| > ) + Fla +o),
and
Flx—e)=P(X<x—¢)
=PX<z—¢|X,—X|>e)+P(X<z—¢]|X,—X|<e¢
< P(X, X| >e€)+ P(X,, <)
= P(|X,, — X| > €) + F,,(z).
Therefore, for all n > 1
Flx—¢)—P(X, —X|>¢) < F,(z) < F(z+¢)+ P(|X,, — X| > ¢). (4.3)

Hence, taking the limit as n — oo and by convergence in probability we have

F(z —e¢) <liminf F, (z) < limsup F,(z) < F(x + ¢).

n—oo n—o00

Since F'is continuous in x, lim,_ F(x —€) = lim,_,o F(x + €) = F(x), so taking the limit ¢ — 0 in (4.3)
shows that lim,,_, . F,(z) = F(x).

Consider U ~ Unif(0,1) and X,, = v/nx(g,1/5)(U). We have

P(1X, = 0] > €) = PVAXjo,1m(U) > €) = Plxio,1m(U) > €/¥/)
< P(xpo,1m)(U) >0)=PO<S UL 1/n) = % -0,

hence X,, — 0 in probability but E(|X,, — 0|?) = fol/n n =1 for all n > 1, so X,, does not converge to 0
in L2.

Let X ~ N(0,1), X,, = —X for all n > 1. Then X, is N(0,1) and hence F, () = F(x) for all n > 1,
but

2 [x =
V €/2

Exercise 5.

Let (2,7, P) be a probability space and {X,,},, a sequence of R%valued random variables with Gaussian
distribution px = N(m,, X,) on (R% B(R)) for all n.

)

i)

ii)

Show that if m,, — m and X,, — X for n — oo, then X,, — X in distribution, where X has distribution
N(m,X).

Show that if X,, — X in L?, then uy is Gaussian.

Show that if X,, — X in distribution, then px is Gaussian.

Hint. Recall that a family of probability measure {u,},, is called tight if for any e > 0, there exists a
compact set K, such that for all p,, one has p,(K,) > 1 —e. Moreover, for R%valued random variables,
one has that a sequence of weakly convergent probability measure is tight (Prokhorov’s Theorem).
Use this information to prove by contradiction that both m,,, >, are bounded sequences and contain
converging subsequences.



Remark. If X: 2 — R? has Gaussian distribution gy = N (m, X)), then its characteristic function is
" ; 1
f(t) := E[eiX"] = exp{im "t — 512t} forte R?. (5.1)
Moreover, one has that
e if p,, — p, (equivalently X, — X in distribution), then f,,(t) — ji(t), Vté& R?
o if f1,,(t) — ¥(t), V¥t € R?and ¥(t) is continuous at ¢ = 0, then 1) is the characteristic function of a
probability distribution u, and p,, — p.
Solution
imht—=tT
2

Tt Clearly, if n — 400, then fi,(t) — fi(t) := E[e!X 1] =

exp{im't — %tTZ‘t}, for all t € R%. Moreover, fi(t) is continuous at zero and corresponds to the

i) px, = N(my, 5,) implies fi, (t) = e

characteristic function of a random variable X with distribution N (m, X), hence py, — N(m,Y) <=
X, — X in distribution.

ii) Since X,, — X in L? we have

m, = E[X,] = E[X]=:m (5.2)
Moreover, since & — €% is Lipschitz, then
[E[eiXt — eiXat]| <E[|(X — X,,)T#]] < [¢]|X — X[l 22 = +00, 1 — +o0. (5.3)
Hence L 1
[(t) :==E[e™ ] = lim E[e'*nt] = exp{im,t — 5t Znt} = explim "t — 5t St} (5.4)
n—+oo

and X has Gaussian distribution N (m, X).
iii) By contradiction, suppose sup  [m,,| = +oco. Then, for all M > 0, there exists 7, such that for all n > n
one has |m,,| > M. Since for a Gaussian measure N (m,,, X,,) one has P(|X,,| > |m,]|) > %, we conclude

that P(|X,| > M) > % But this fact contradicts tightness, hence sup  |m,| < +oo. One can prove

sup, |¥,| < +oo in a similar way. As both sequences m,,, X, are bounded, one can extract convergent
subsequences m,, , X, and called their limit m, X, respectively. Since X,, is converging in distribution
to X, it follow that for all ¢

E[eX'] = lim E[eX+] = lim E[eiXW]:exp{imm%ﬂm}, (5.5)

n—+oo nj—+00

hence X ~ N (m, X).

Exercise 6.

Let (2,7, P) be a probability space and G C F be a o-algebra. Let X,Y: {2 — R be integrable random
variables on 2. Using the definition of conditional expectation of random variables given a o-algebra, prove
the following statements.

i) E(aX +bY|G) = dE(X]|G) + bE(Y|G) a.s. for a,b € R.
it) If X is G-measurable then E(X|G) = X a.s.
117) If X is G-measurable and XY is integrable then E(XY|G) = XE(Y|9) a.s.



i) If X is independent of G then E(X|G) = E(X) a.s.
v) If H is a o-algebra such that H C G then

E(X|70) = E(E(X|9)|%) = E(E(X|7()[9) as.

vi) If X < Ya.s. then E(X|9) <E(Y|9) a.s.

Solution

i) It is clear that Z = aE(X|G) + bE(Y|9) is G-measurable. Moreover, using the definition of conditional
expectation, Z satisfies for any A € G

/ZP:a/XP+b/YP:/aX+bYP.
A A A A

Hence, we conclude that Z = E(aX 4 bY'|§) by the uniqueness of the conditional expectation.
it) Z = X satisfies the two conditions of the definition of E(X|G), hence Z = E(X|G) by uniqueness.

iit) Note that as X is G-measurable, Z = XE(Y|G) is G-measurable. We prove the result for a simple
function X = Z?:l 9iXa,, where {G,;} C G. Note that for A € G,

/ZP:E:%/‘ E(Y[9)P=) g YP:/XWR
A i=1 ANG; i=1 ANG; A

and we conclude that Z = E(XY|G). The general result is then obtained by approximation with simple
functions, applying the monotone convergence theorem and considering the positive and negative parts.

i) For Z =E(X) and A € G, using the independence we have

[ 2P=B0PMA) = BB = EX) = [ XP
A A

and therefore Z = E(X19).

v) First note that as # C G Z = E(X|H) is G-measurable. Using ii), it is clear that E(E(X|#)|9) =
E(X|7). Now, for any A € % it holds [, ZP = [, XP = [ E(X|§) P, because also A € §. We
conclude that Z = E(E(X|G)|7).

vi) We prove it by contradiction. Consider the event A = {E(X | §) > E(Y | §)} € G. Then, by i) we
rewrite A = {E(X —Y | §) > 0}. Assume by contradiction that P(A4) > 0 and denote Z = E(X-Y | §).

Then, clearly
/ ZP>0.
A

On the other hand, since X < Y a.s. and by definition of conditional expectation,

/ZP:/X—YPgm
A A

which gives a contradiction. Hence P(A) =0 and E(X | §) <E(Y | G) as.
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