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Exercise 1.
Consider a numerical scheme of weak order 𝑝 ⩾ 1, delivering a discrete solution {𝑋𝑛}𝑁

𝑛=0 on a grid with
time step 𝛥𝑡 = 𝑇

𝑁
, and the Monte Carlo estimator ̂𝑍 = 1

𝑀
∑𝑀

𝑖=1 𝜑(𝑋(𝑖)
𝑁 ) with 𝑋(𝑖)

𝑁 ∼ 𝑋𝑛 i.i.d. to approximate
𝑍 = E[𝑋(𝑇 )]. We define the computational cost of the Monte Carlo estimator ̂𝑍 as

cost = 𝒪(number of time steps × number of sample paths) = 𝒪( 𝑀
𝛥𝑡),

and we say that the estimator has accuracy 𝜖 > 0 if √MSE( ̂𝑍) = 𝒪(𝜖).

i) Compute the optimal values of 𝑀 and 𝛥𝑡 that minimize the computational cost 𝜂 = 𝑀/𝛥𝑡, subject to
a fixed accuracy 𝜖; derive the corresponding cost of the Monte Carlo estimator as a function of 𝜖 in this
case. (Hint: Solve a constrained optimization problem in (𝑀, 𝛥𝑡), where the variable 𝑀 is treated as a
positive real number)

ii) Implement this estimator to compute E[(𝑋(𝑇 ) − 𝐾)+] where 𝑋𝑡 solves the SDE

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡.

Use 𝑇 = 1, 𝑋0 = 1, 𝐾 = 100, 𝑟 = 0.05, 𝜎 = 0.01. Choose a sequence of tollerance 𝜀 = 0.1, 0.05, 0.025, 0.0125, ....
For each 𝜀, find the ”nearly optimal” 𝑀 = 𝑀(𝜀) and 𝛥𝑡 = 𝛥𝑡(𝜀) and estimate the MSE by repeiting
the simulation several times (the exact value of 𝑍 can be computed analytically). Plot the (estimated)
MSE versus 𝜀2 and versus 𝜂. Comment the results.

Exercise 2.
Implement the MLMC method for the Euler–Maruyama scheme with 𝐿 levels. Consider the SDE on [0, 𝑇 ]

d𝑋(𝑡) = 𝜆𝑋(𝑡)d𝑡 + 𝜇𝑋(𝑡)d𝑊(𝑡),
𝑋(0) = 𝑋0,

(2.1)

with 𝜆 = 1, 𝜇 = 0.1, 𝑇 = 1, 𝑋0 = 0.1 and the function 𝜙(𝑥) = 𝑥. Take a sequence of discretizations with
𝛥𝑡ℓ = 2−ℓ.

i) Plot the variances Var(𝜙ℓ) and 𝑉ℓ ∶= Var(𝜙ℓ − 𝜙ℓ−1), as well as 𝐵ℓ = |E[𝜙𝑙 − 𝜙]|, as a function of the
level ℓ = 0, … , 10. Estimate these quantities by Monte Carlo with sufficient samples.

ii) From the previous point, fit models 𝑉ℓ ≈ 𝐶𝑣𝛥𝑡𝛽
ℓ and 𝐵ℓ ≈ 𝐶𝑏𝛥𝑡𝛼. Verify that 𝛽 ≈ 1 and 𝛼 ≈ 1. For a

fixed 𝐿 ∈ {3, … , 10} estimate the bias accuracy 𝜀 = |E[𝜙𝐿 − 𝜙]| and consider the choice of sample sizes
𝑀ℓ = 𝜀−2𝐿𝑉ℓ ≈ 𝐿 𝐶𝑣𝛥𝛽

ℓ

𝐶2
𝑏 𝛥2𝛼

ℓ
, ℓ = 0, … , 𝐿.

iii) Run several times the MLMC algorithm with the choices of 𝑀ℓ from the previous point. Estimate
and plot the MSE of the MLMC method for different values of 𝐿 = 3, … , 10 as a function of the
computational cost ∑𝐿

ℓ=0 𝑀ℓ𝛥𝑡−1
ℓ . (The exact value E[𝜙] can be computed analytically). Moreover,

estimate and plot on the same figure the MSE of the standard Monte–Carlo method corresponding to
(roughly) the same computational costs.
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iv) For a given 𝐿, find optimal values of {𝑀ℓ}𝐿
ℓ=0 that minimize the cost ∑𝐿

ℓ=0 𝑀ℓ𝛥𝑡−1
ℓ , subject to a fixed

accuracy 𝜀. (Treat the variables 𝑀ℓ as positive real numbers to solve this constrained optimization
problem). Derive the correspoding computational cost of the MLMC estimator as a function of 𝜀.
Repeat the previous point with this choice of sample sizes and compare the results.

Exercise 3.
Consider the SDE on [0, 1]

d𝑋(𝑡) = 𝜆𝑋(𝑡)d𝑡 + 𝜇𝑋(𝑡)d𝑊(𝑡),
𝑋(0) = 𝑋0,

(3.1)

where 𝜆, 𝜇 ∈ R are such that the solution is mean square stable, i.e., 𝜆 + 𝜇2/2 < 0 (see Exercise 4 of Series
11). Let 𝜙∶ R → R be a Lipschitz function and approximate 𝜙(𝑋(1)) with MLMC and the Euler–Maruyama
method.

i) The Euler–Maruyama method has a step size restriction when applied to (3.1), i.e., 𝛥𝑡 has to be chosen
below a threshold 𝛥𝑡EM for the method to be mean-square stable. What is the value of 𝛥𝑡EM? What is
the minimum level ℓEM which can be employed?

The MLMC estimator is then given by

𝐸 =
𝐿

∑
ℓ=ℓEM

1
𝑀ℓ

𝑀ℓ

∑
𝑖=1

(𝜙(𝑖)
ℓ − 𝜙(𝑖)

ℓ−1).

Moreover, we remark that if the most refined level 𝐿 for attaining the desired tolerance is such that 𝑙EM ⩾ 𝐿,
then a simple Monte Carlo method with time step 𝛥𝑡EM is employed.

ii) Consider the following definition for the number of trajectories

𝑀ℓ = {22𝐿−ℓ(𝐿 − ℓEM) if ℓ = ℓEM + 1, … , 𝐿,
22𝐿(𝐿 − ℓEM) if ℓ = ℓEM.

How do you choose 𝐿 such that the MSE of the MLMC estimator is 𝒪(𝜀2)? What is the computational
cost in this case?

iii) Modify the implementation of MLMC in Exercise 2 to take into account the considerations above. Set
𝜙(𝑥) = 𝑥 and apply the method to equation (3.1) with 𝜆 ∈ {−10, −50, −250}, 𝜇 =

√
−𝜆 and 𝑋0 = 1.

Consider 𝐿 ∈ {1, 2, … , 10} and plot the computational cost as a function of the finest step size 𝛥𝑡𝐿.
What do you observe?

iv) Compare the previous results with those obtained with a standard MLMC applied to the drift implicit
Euler Method (stochastic 𝜃-method with 𝜃 = 1), using all the levels.
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