

Series 12 - December 11, 2024

Exercise 1.

Consider a numerical scheme of weak order $p \geqslant 1$, delivering a discrete solution $\{X_n\}_{n=0}^N$ on a grid with time step $\Delta t = \frac{T}{N}$, and the Monte Carlo estimator $\hat{Z} = \frac{1}{M} \sum_{i=1}^M \varphi(X_N^{(i)})$ with $X_N^{(i)} \sim X_n$ i.i.d. to approximate $Z = \mathbb{E}[X(T)]$. We define the computational cost of the Monte Carlo estimator \hat{Z} as

$$\mathrm{cost} = \mathcal{O}(\mathrm{number\ of\ time\ steps} \times \mathrm{number\ of\ sample\ paths}) = \mathcal{O}\Big(\frac{M}{\Delta t}\Big),$$

and we say that the estimator has accuracy $\epsilon>0$ if $\sqrt{\mathrm{MSE}(\hat{Z})}=\mathcal{O}(\epsilon).$

- i) Compute the optimal values of M and Δt that minimize the computational cost $\eta = M/\Delta t$, subject to a fixed accuracy ϵ ; derive the corresponding cost of the Monte Carlo estimator as a function of ϵ in this case. (Hint: Solve a constrained optimization problem in $(M, \Delta t)$, where the variable M is treated as a positive real number)
- ii) Implement this estimator to compute $\mathbb{E}[(X(T)-K)_+]$ where X_t solves the SDE

$$dX_t = rX_t dt + \sigma X_t dW_t.$$

Use $T=1, X_0=1, K=100, r=0.05, \sigma=0.01$. Choose a sequence of tollerance $\varepsilon=0.1, 0.05, 0.025, 0.0125, \ldots$ For each ε , find the "nearly optimal" $M=M(\varepsilon)$ and $\Delta t=\Delta t(\varepsilon)$ and estimate the MSE by repeiting the simulation several times (the exact value of Z can be computed analytically). Plot the (estimated) MSE versus ε^2 and versus η . Comment the results.

Exercise 2.

Implement the MLMC method for the Euler-Maruyama scheme with L levels. Consider the SDE on [0,T]

$$dX(t) = \lambda X(t)dt + \mu X(t)dW(t),$$

$$X(0) = X_0,$$
(2.1)

with $\lambda=1,\ \mu=0.1,\ T=1,\ X_0=0.1$ and the function $\phi(x)=x.$ Take a sequence of discretizations with $\Delta t_\ell=2^{-\ell}.$

- i) Plot the variances $\operatorname{Var}(\phi_{\ell})$ and $V_{\ell} := \operatorname{Var}(\phi_{\ell} \phi_{\ell-1})$, as well as $B_{\ell} = |\mathbb{E}[\phi_{\ell} \phi]|$, as a function of the level $\ell = 0, \dots, 10$. Estimate these quantities by Monte Carlo with sufficient samples.
- ii) From the previous point, fit models $V_{\ell} \approx C_v \Delta t_{\ell}^{\beta}$ and $B_{\ell} \approx C_b \Delta t^{\alpha}$. Verify that $\beta \approx 1$ and $\alpha \approx 1$. For a fixed $L \in \{3, \dots, 10\}$ estimate the bias accuracy $\varepsilon = |\mathbb{E}[\phi_L \phi]|$ and consider the choice of sample sizes $M_{\ell} = \varepsilon^{-2} L V_{\ell} \approx L \frac{C_v \Delta_{\ell}^{\beta}}{C_k^2 \Delta_{\ell}^{2\alpha}}, \ \ell = 0, \dots, L$.
- iii) Run several times the MLMC algorithm with the choices of M_{ℓ} from the previous point. Estimate and plot the MSE of the MLMC method for different values of $L=3,\ldots,10$ as a function of the computational cost $\sum_{\ell=0}^{L} M_{\ell} \Delta t_{\ell}^{-1}$. (The exact value $\mathbb{E}[\phi]$ can be computed analytically). Moreover, estimate and plot on the same figure the MSE of the standard Monte–Carlo method corresponding to (roughly) the same computational costs.

iv) For a given L, find optimal values of $\{M_\ell\}_{\ell=0}^L$ that minimize the cost $\sum_{\ell=0}^L M_\ell \Delta t_\ell^{-1}$, subject to a fixed accuracy ε . (Treat the variables M_ℓ as positive real numbers to solve this constrained optimization problem). Derive the correspoding computational cost of the MLMC estimator as a function of ε . Repeat the previous point with this choice of sample sizes and compare the results.

Exercise 3.

Consider the SDE on [0, 1]

$$dX(t) = \lambda X(t)dt + \mu X(t)dW(t),$$

$$X(0) = X_0,$$
(3.1)

where $\lambda, \mu \in \mathbb{R}$ are such that the solution is mean square stable, i.e., $\lambda + \mu^2/2 < 0$ (see Exercise 4 of Series 11). Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be a Lipschitz function and approximate $\phi(X(1))$ with MLMC and the Euler–Maruyama method.

i) The Euler–Maruyama method has a step size restriction when applied to (3.1), i.e., Δt has to be chosen below a threshold $\Delta t_{\rm EM}$ for the method to be mean-square stable. What is the value of $\Delta t_{\rm EM}$? What is the minimum level $\ell_{\rm EM}$ which can be employed?

The MLMC estimator is then given by

$$\widehat{E} = \sum_{\ell = \ell_{\rm EM}}^{L} \frac{1}{M_{\ell}} \sum_{i=1}^{M_{\ell}} (\phi_{\ell}^{(i)} - \phi_{\ell-1}^{(i)}).$$

Moreover, we remark that if the most refined level L for attaining the desired tolerance is such that $l_{\rm EM} \geqslant L$, then a simple Monte Carlo method with time step $\Delta t_{\rm EM}$ is employed.

ii) Consider the following definition for the number of trajectories

$$M_\ell = \begin{cases} 2^{2L-\ell}(L-\ell_{\rm EM}) & \text{if } \ell=\ell_{\rm EM}+1,\dots,L, \\ 2^{2L}(L-\ell_{\rm EM}) & \text{if } \ell=\ell_{\rm EM}. \end{cases}$$

How do you choose L such that the MSE of the MLMC estimator is $\mathcal{O}(\varepsilon^2)$? What is the computational cost in this case?

- iii) Modify the implementation of MLMC in Exercise 2 to take into account the considerations above. Set $\phi(x) = x$ and apply the method to equation (3.1) with $\lambda \in \{-10, -50, -250\}$, $\mu = \sqrt{-\lambda}$ and $X_0 = 1$. Consider $L \in \{1, 2, ..., 10\}$ and plot the computational cost as a function of the finest step size Δt_L . What do you observe?
- iv) Compare the previous results with those obtained with a standard MLMC applied to the drift implicit Euler Method (stochastic θ -method with $\theta = 1$), using all the levels.