Numerical Integration of Stochastic Differential Equations E PFL
Week 2024-12-09 to 2024-12-13 Prof. Fabio Nobile

Series 12 - December 11, 2024

Exercise 1.

Consider a numerical scheme of weak order p > 1, delivering a discrete solution {X,, }2_, on a grid with
time step At = %, and the Monte Carlo estimator Z = ]\—14 Zf\il cp(Xg\l,)) with Xg\? ~ X,, ii.d. to approximate
Z =E[X(T)]. We define the computational cost of the Monte Carlo estimator Z as

cost = O(number of time steps X number of sample paths) = 0(%),

and we say that the estimator has accuracy € > 0 if \/MSE(Z) = O(e).

i) Compute the optimal values of M and At that minimize the computational cost n = M /At, subject to
a fixed accuracy e; derive the corresponding cost of the Monte Carlo estimator as a function of € in this
case. (Hint: Solve a constrained optimization problem in (M, At), where the variable M is treated as a
positive real number)

it) Implement this estimator to compute E[(X(T") — K),] where X, solves the SDE

dX; = rX,dt + o X, dW,.

UseT =1,X,=1, K =100, r = 0.05, 0 = 0.01. Choose a sequence of tollerance ¢ = 0.1,0.05,0.025,0.0125, ....

For each ¢, find the "nearly optimal” M = M (e) and At = At(e) and estimate the MSE by repeiting
the simulation several times (the exact value of Z can be computed analytically). Plot the (estimated)
MSE versus €2 and versus 7. Comment the results.

Solution
i) If the method has a weak order p > 1, then we have MSE(Z) = (9(5 + (At)?P). Hence, as we want
VMSE = O(e), it is sufficient to have M~ = O(¢?) and At = O(¢'/P). The cost is in this case

cost = O(At™1 - M) = O(e VP . 2) = O(e 2H1/P),

Assuming that the MSE satisfies MSE < C; Mt + Cy(At)?P < €2 for some C,Cy > 0, we could define
the following optimization problem:

. M —1 2p 2
ngglt S t. CiIM 1 4+ Cy(At) €

Defining the Lagrangian £(M, At) = M(At)™! + A(C; M~ + Cy(At)?P) we have

oL(M,At) - o 0L(M, At) 2 2p—1 _
WfAt —AC{M—= =0, TfMAt + 2pACyA =0,
which implies
- M? _ M
 CLAt  2pC,y(At)2pr+l
and, hence,
Cy(AL)P = ﬁ
2 M
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Figure 1: MSE with respect to €2 and the cost implementing a Euler-Maruyama method.

This solution is quite obvious, the optimal choice consists in balancing the two terms. Without loss
1+2p

1 2p
of generalities, assume C; = Cy. So n = MAt™' = MM=2» = M 2r , which gives M = nt+2r and At =
1 2p __r
n 1+2». Therefore, we conclude that MSE = O(M ') = @(n *+2r), which implies VMSE = O(n 1+2»).

1) The plots are shown in Figure

Exercise 2.
Implement the MLMC method for the Euler-Maruyama scheme with L levels. Consider the SDE on [0, T']

AX(t) = AX(H)dt + pX (H)dW (1),

X(0) = X, (2.1)

with A\=1, p = 0.1, T =1, X, = 0.1 and the function ¢(z) = z. Take a sequence of discretizations with
Aty =274,

i) Plot the variances Var(¢,) and V, := Var(¢, — ¢,_1), as well as By = |E[¢; — ¢]|, as a function of the
level £ =0, ...,10. Estimate these quantities by Monte Carlo with sufficient samples.

it) From the previous point, fit models V, ~ CvAtf and B, ~ C,At®. Verify that S~ 1 and a ~ 1. For a
fixed L € {3,...,10} estimate the bias accuracy € = |E[¢; — ¢]| and consider the choice of sample sizes

2 C, A}
My=e LV, L—=—- ¢=0,..., L.
c2az

i17) Run several times the MLMC algorithm with the choices of M, from the previous point. Estimate
and plot the MSE of the MLMC method for different values of L = 3,...,10 as a function of the
computational cost ZgL:o M,At;'. (The exact value E[¢] can be computed analytically). Moreover,
estimate and plot on the same figure the MSE of the standard Monte—Carlo method corresponding to
(roughly) the same computational costs.

iv) For a given L, find optimal values of {M,}£_; that minimize the cost Ef:o M,At; !, subject to a fixed
accuracy €. (Treat the variables M, as positive real numbers to solve this constrained optimization
problem). Derive the correspoding computational cost of the MLMC estimator as a function of ¢.
Repeat the previous point with this choice of sample sizes and compare the results.

Solution

The requested plots are given in Figure 2. We estimate point ¢) with a Monte-Carlo method of samples
M, ~ 10 for each .
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Figure 2: Variances and bias as a function of the level (above - point i), and intermediate - i7)) . MSE as a
function of the computational cost (below).



Instead, considering the point iv), please refer to the Lecture of the course concerning Monte-Carlo and
Multilevel Monte-Carlo, where the expression of the optimal M; is given by

L
My = gz\/g(;) \/vkck> : (2.2)

After having substituting the values of ¢; and v; in (2.2), we find that M; ~ M,, the chosen sample size of
point 7).

Exercise 3.

Consider the SDE on [0, 1]
dX(t) = AX(t)dt + pX(t)dW (1), (3.1)
X(O) = XOa '

where )\, € R are such that the solution is mean square stable, i.e., A + u2/2 < 0 (see Exercise 4 of Series
11). Let ¢: R — R be a Lipschitz function and approximate ¢(X (1)) with MLMC and the Euler—-Maruyama
method.

i) The Euler-Maruyama method has a step size restriction when applied to (3.1), i.e., At has to be chosen
below a threshold Atgy; for the method to be mean-square stable. What is the value of Atgy? What is
the minimum level ¢gy; which can be employed?

The MLMC estimator is then given by
SRR SR
E= %" 37> (& —o).
Moreover, we remark that if the most refined level L for attaining the desired tolerance is such that Iz > L,
then a simple Monte Carlo method with time step Aty is employed.
1) Consider the following definition for the number of trajectories
o 22L_€<L—£EM> lffzzEM+1,,L7
ETO) 22L(L —tyy)  if = lpyy

How do you choose L such that the MSE of the MLMC estimator is ((¢2)? What is the computational
cost in this case?

117) Modify the implementation of MLMC in Exercise 2 to take into account the considerations above. Set
¢(x) = x and apply the method to equation (3.1) with A\ € {—10,—50,—250}, u = vV/—X and X, = 1.
Consider L € {1,2,...,10} and plot the computational cost as a function of the finest step size Atj.
What do you observe?

iv) Compare the previous results with those obtained with a standard MLMC applied to the drift implicit
Euler Method (stochastic #-method with 6 = 1), using all the levels.

Solution

i) The value of Aty is given by considering the case § = 0 in the stochastic f-method, i.e.

2\ + p?
Atgy = T
hence, if Aty < 1, some levels of the standard MLMC procedure are inaccessible and the minimum

level is
lgn = []1og, (Atga)] -
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Figure 3: Computational cost as a function of the finest step size for different values of A in Exercise 3. The
red dotted lines represent the values of Atyyy.

it) By the bias—variance decomposition of the MSE, we have
MSE(E) = CAt2 + Var(E),

where the variance is given by

L
7 Var(¢lEh4)+ 3 Var(¢§w—l¢ll)

I=lgp+1

Plugging the definition of M, and recalling that Var(¢; — ¢;_;) < CAt;, we have

~ Va
Var(E) < At%M + C A
L —lgm

Hence, since Var(¢; ) = O(1) in order to have MSE(E) = 0(¢2) we can choose L = [log,(€)]. The
computational cost is then given by

L
COSt(E) = 22L2lEM (L — lEM) + Z 2l (L — lEM)22L_l
I=lgp+1
= 225(L = lnr) ((L = lina) + 215

! l
2 EM _ EM _ /L
e 2 log, (=) (B — 1) (1og,(e) (LM — 1) 4+ & tew/2)
< Ce?(|log, (e)|* + |10g2(€)|€7ZE1\/I/L).

We see that for lgy — L we have Cost(E) = @(¢3) as in the Monte Carlo case. Conversely, for Iy — 0,
the cost approaches the standard MLMC cost.

117) The plots are given in Figure 3.

iv) The Implicit Euler Method is mean-square stable for each At if the original SDE is stable. Therefore, we
do not need to modify the MLMC procedure. We choose the M, as done in Exercise 2 and we consider
the same tolerance € of the previous point. The plots are given in Figure 4.
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Figure 4: Computational cost for the implementation of MLMC with a Implicit Euler Method as a function
of the finest step size for different values of A\ in Exercise 3.
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