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Exercise 1.
Consider a numerical scheme of weak order 𝑝 ⩾ 1, delivering a discrete solution {𝑋𝑛}𝑁

𝑛=0 on a grid with
time step 𝛥𝑡 = 𝑇

𝑁
, and the Monte Carlo estimator ̂𝑍 = 1

𝑀
∑𝑀

𝑖=1 𝜑(𝑋(𝑖)
𝑁 ) with 𝑋(𝑖)

𝑁 ∼ 𝑋𝑛 i.i.d. to approximate
𝑍 = E[𝑋(𝑇 )]. We define the computational cost of the Monte Carlo estimator ̂𝑍 as

cost = 𝒪(number of time steps × number of sample paths) = 𝒪( 𝑀
𝛥𝑡),

and we say that the estimator has accuracy 𝜖 > 0 if √MSE( ̂𝑍) = 𝒪(𝜖).

i) Compute the optimal values of 𝑀 and 𝛥𝑡 that minimize the computational cost 𝜂 = 𝑀/𝛥𝑡, subject to
a fixed accuracy 𝜖; derive the corresponding cost of the Monte Carlo estimator as a function of 𝜖 in this
case. (Hint: Solve a constrained optimization problem in (𝑀, 𝛥𝑡), where the variable 𝑀 is treated as a
positive real number)

ii) Implement this estimator to compute E[(𝑋(𝑇 ) − 𝐾)+] where 𝑋𝑡 solves the SDE

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡.

Use 𝑇 = 1, 𝑋0 = 1, 𝐾 = 100, 𝑟 = 0.05, 𝜎 = 0.01. Choose a sequence of tollerance 𝜀 = 0.1, 0.05, 0.025, 0.0125, ....
For each 𝜀, find the ”nearly optimal” 𝑀 = 𝑀(𝜀) and 𝛥𝑡 = 𝛥𝑡(𝜀) and estimate the MSE by repeiting
the simulation several times (the exact value of 𝑍 can be computed analytically). Plot the (estimated)
MSE versus 𝜀2 and versus 𝜂. Comment the results.

Solution

i) If the method has a weak order 𝑝 ⩾ 1, then we have MSE( ̂𝑍) = 𝒪( 1
𝑀

+ (𝛥𝑡)2𝑝). Hence, as we want
√

MSE = 𝒪(𝜖), it is sufficient to have 𝑀−1 = 𝒪(𝜖2) and 𝛥𝑡 = 𝒪(𝜖1/𝑝). The cost is in this case

cost = 𝒪(𝛥𝑡−1 ⋅ 𝑀) = 𝒪(𝜖−1/𝑝 ⋅ 𝜖−2) = 𝒪(𝜖−(2+1/𝑝)).

Assuming that the MSE satisfies MSE ⩽ 𝐶1𝑀−1 + 𝐶2(𝛥𝑡)2𝑝 ⩽ 𝜀2 for some 𝐶1, 𝐶2 > 0, we could define
the following optimization problem:

min
𝑀,𝛥𝑡

𝑀
𝛥𝑡 s.t. 𝐶1𝑀−1 + 𝐶2(𝛥𝑡)2𝑝 ⩽ 𝜀2.

Defining the Lagrangian ℒ(𝑀, 𝛥𝑡) = 𝑀(𝛥𝑡)−1 + 𝜆(𝐶1𝑀−1 + 𝐶2(𝛥𝑡)2𝑝) we have

∂ℒ(𝑀, 𝛥𝑡)
∂𝑀 = 𝛥𝑡−1 − 𝜆𝐶1𝑀−2 = 0,

∂ℒ(𝑀, 𝛥𝑡)
∂𝛥𝑡 = 𝑀𝛥𝑡−2 + 2𝑝𝜆𝐶2𝛥2𝑝−1 = 0,

which implies

𝜆 = 𝑀2

𝐶1𝛥𝑡 = 𝑀
2𝑝𝐶2(𝛥𝑡)2𝑝+1

and, hence,
𝐶2(𝛥𝑡)𝑝 = 𝐶1

𝑀 .
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Figure 1: MSE with respect to 𝜀2 and the cost implementing a Euler-Maruyama method.

This solution is quite obvious, the optimal choice consists in balancing the two terms. Without loss
of generalities, assume 𝐶1 = 𝐶2. So 𝜂 = 𝑀𝛥𝑡−1 = 𝑀𝑀

1
2𝑝 = 𝑀

1+2𝑝
2𝑝 , which gives 𝑀 = 𝜂

2𝑝
1+2𝑝 and 𝛥𝑡 =

𝜂− 1
1+2𝑝 . Therefore, we conclude that MSE = 𝒪(𝑀−1) = 𝒪(𝜂− 2𝑝

1+2𝑝 ), which implies
√

MSE = 𝒪(𝜂− 𝑝
1+2𝑝 ).

ii) The plots are shown in Figure

Exercise 2.
Implement the MLMC method for the Euler–Maruyama scheme with 𝐿 levels. Consider the SDE on [0, 𝑇 ]

d𝑋(𝑡) = 𝜆𝑋(𝑡)d𝑡 + 𝜇𝑋(𝑡)d𝑊(𝑡),
𝑋(0) = 𝑋0,

(2.1)

with 𝜆 = 1, 𝜇 = 0.1, 𝑇 = 1, 𝑋0 = 0.1 and the function 𝜙(𝑥) = 𝑥. Take a sequence of discretizations with
𝛥𝑡ℓ = 2−ℓ.

i) Plot the variances Var(𝜙ℓ) and 𝑉ℓ ∶= Var(𝜙ℓ − 𝜙ℓ−1), as well as 𝐵ℓ = |E[𝜙𝑙 − 𝜙]|, as a function of the
level ℓ = 0, … , 10. Estimate these quantities by Monte Carlo with sufficient samples.

ii) From the previous point, fit models 𝑉ℓ ≈ 𝐶𝑣𝛥𝑡𝛽
ℓ and 𝐵ℓ ≈ 𝐶𝑏𝛥𝑡𝛼. Verify that 𝛽 ≈ 1 and 𝛼 ≈ 1. For a

fixed 𝐿 ∈ {3, … , 10} estimate the bias accuracy 𝜀 = |E[𝜙𝐿 − 𝜙]| and consider the choice of sample sizes
𝑀ℓ = 𝜀−2𝐿𝑉ℓ ≈ 𝐿 𝐶𝑣𝛥𝛽

ℓ

𝐶2
𝑏 𝛥2𝛼

ℓ
, ℓ = 0, … , 𝐿.

iii) Run several times the MLMC algorithm with the choices of 𝑀ℓ from the previous point. Estimate
and plot the MSE of the MLMC method for different values of 𝐿 = 3, … , 10 as a function of the
computational cost ∑𝐿

ℓ=0 𝑀ℓ𝛥𝑡−1
ℓ . (The exact value E[𝜙] can be computed analytically). Moreover,

estimate and plot on the same figure the MSE of the standard Monte–Carlo method corresponding to
(roughly) the same computational costs.

iv) For a given 𝐿, find optimal values of {𝑀ℓ}𝐿
ℓ=0 that minimize the cost ∑𝐿

ℓ=0 𝑀ℓ𝛥𝑡−1
ℓ , subject to a fixed

accuracy 𝜀. (Treat the variables 𝑀ℓ as positive real numbers to solve this constrained optimization
problem). Derive the correspoding computational cost of the MLMC estimator as a function of 𝜀.
Repeat the previous point with this choice of sample sizes and compare the results.

Solution
The requested plots are given in Figure 2. We estimate point 𝑖) with a Monte-Carlo method of samples

𝑀𝑙 ≈ 106 for each 𝑙.
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Figure 2: Variances and bias as a function of the level (above - point 𝑖), and intermediate - 𝑖𝑖)) . MSE as a
function of the computational cost (below).
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Instead, considering the point 𝑖𝑣), please refer to the Lecture of the course concerning Monte-Carlo and
Multilevel Monte-Carlo, where the expression of the optimal 𝑀∗

𝑙 is given by

𝑀∗
𝑙 = 𝜀−2√𝑣𝑙

𝑐𝑙
(

𝐿

∑
𝑘=0

√𝑣𝑘𝑐𝑘). (2.2)

After having substituting the values of 𝑐𝑙 and 𝑣𝑙 in (2.2), we find that 𝑀∗
𝑙 ≈ 𝑀ℓ, the chosen sample size of

point 𝑖𝑖).

Exercise 3.
Consider the SDE on [0, 1]

d𝑋(𝑡) = 𝜆𝑋(𝑡)d𝑡 + 𝜇𝑋(𝑡)d𝑊(𝑡),
𝑋(0) = 𝑋0,

(3.1)

where 𝜆, 𝜇 ∈ R are such that the solution is mean square stable, i.e., 𝜆 + 𝜇2/2 < 0 (see Exercise 4 of Series
11). Let 𝜙∶ R → R be a Lipschitz function and approximate 𝜙(𝑋(1)) with MLMC and the Euler–Maruyama
method.

i) The Euler–Maruyama method has a step size restriction when applied to (3.1), i.e., 𝛥𝑡 has to be chosen
below a threshold 𝛥𝑡EM for the method to be mean-square stable. What is the value of 𝛥𝑡EM? What is
the minimum level ℓEM which can be employed?

The MLMC estimator is then given by

𝐸 =
𝐿

∑
ℓ=ℓEM

1
𝑀ℓ

𝑀ℓ

∑
𝑖=1

(𝜙(𝑖)
ℓ − 𝜙(𝑖)

ℓ−1).

Moreover, we remark that if the most refined level 𝐿 for attaining the desired tolerance is such that 𝑙EM ⩾ 𝐿,
then a simple Monte Carlo method with time step 𝛥𝑡EM is employed.

ii) Consider the following definition for the number of trajectories

𝑀ℓ = {22𝐿−ℓ(𝐿 − ℓEM) if ℓ = ℓEM + 1, … , 𝐿,
22𝐿(𝐿 − ℓEM) if ℓ = ℓEM.

How do you choose 𝐿 such that the MSE of the MLMC estimator is 𝒪(𝜀2)? What is the computational
cost in this case?

iii) Modify the implementation of MLMC in Exercise 2 to take into account the considerations above. Set
𝜙(𝑥) = 𝑥 and apply the method to equation (3.1) with 𝜆 ∈ {−10, −50, −250}, 𝜇 =

√
−𝜆 and 𝑋0 = 1.

Consider 𝐿 ∈ {1, 2, … , 10} and plot the computational cost as a function of the finest step size 𝛥𝑡𝐿.
What do you observe?

iv) Compare the previous results with those obtained with a standard MLMC applied to the drift implicit
Euler Method (stochastic 𝜃-method with 𝜃 = 1), using all the levels.

Solution

i) The value of 𝛥𝑡EM is given by considering the case 𝜃 = 0 in the stochastic 𝜃-method, i.e.

𝛥𝑡EM = −2𝜆 + 𝜇2

𝜆2 ,

hence, if 𝛥𝑡EM < 1, some levels of the standard MLMC procedure are inaccessible and the minimum
level is

𝑙EM = ⌈| log2(𝛥𝑡EM)|⌉.
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Figure 3: Computational cost as a function of the finest step size for different values of 𝜆 in Exercise 3. The
red dotted lines represent the values of 𝛥𝑡EM.

ii) By the bias–variance decomposition of the MSE, we have

MSE( ̂𝐸) = 𝐶𝛥𝑡2
𝐿 + Var( ̂𝐸),

where the variance is given by

Var( ̂𝐸) =
Var(𝜙𝑙EM

)
𝑀𝑙EM

+
𝐿

∑
𝑙=𝑙EM+1

Var(𝜙𝑙 − 𝜙𝑙−1)
𝑀𝑙

.

Plugging the definition of 𝑀𝑙 and recalling that Var(𝜙𝑙 − 𝜙𝑙−1) ⩽ 𝐶𝛥𝑡𝑙, we have

Var( ̂𝐸) ⩽ 𝛥𝑡2
𝐿

Var(𝜙𝑙EM
)

𝐿 − 𝑙EM
+ 𝐶𝛥𝑡2

𝐿.

Hence, since Var(𝜙𝑙EM
) = 𝒪(1) in order to have MSE( ̂𝐸) = 𝒪(𝜀2) we can choose 𝐿 = |log2(𝜖)|. The

computational cost is then given by

Cost( ̂𝐸) = 22𝐿2𝑙EM(𝐿 − 𝑙EM) +
𝐿

∑
𝑙=𝑙EM+1

2𝑙(𝐿 − 𝑙EM)22𝐿−𝑙

= 22𝐿(𝐿 − 𝑙EM)((𝐿 − 𝑙EM) + 2𝑙EM)

= 𝜀−2 log2(𝜀)(𝑙EM
𝐿 − 1)( log2(𝜀)( 𝑙EM

𝐿 − 1) + 𝜀−𝑙EM/𝐿)

⩽ 𝐶𝜀−2(|log2(𝜀)|2 + |log2(𝜀)|𝜀−𝑙EM/𝐿).

We see that for 𝑙EM → 𝐿 we have Cost( ̂𝐸) = 𝒪(𝜀−3) as in the Monte Carlo case. Conversely, for 𝑙EM → 0,
the cost approaches the standard MLMC cost.

iii) The plots are given in Figure 3.

iv) The Implicit Euler Method is mean-square stable for each 𝛥𝑡 if the original SDE is stable. Therefore, we
do not need to modify the MLMC procedure. We choose the 𝑀𝑙 as done in Exercise 2 and we consider
the same tolerance 𝜖 of the previous point. The plots are given in Figure 4.
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Figure 4: Computational cost for the implementation of MLMC with a Implicit Euler Method as a function
of the finest step size for different values of 𝜆 in Exercise 3.
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