

Series 12 - December 11, 2024

Exercise 1.

Consider a numerical scheme of weak order $p \ge 1$, delivering a discrete solution $\{X_n\}_{n=0}^N$ on a grid with time step $\Delta t = \frac{T}{N}$, and the Monte Carlo estimator $\hat{Z} = \frac{1}{M} \sum_{i=1}^M \varphi(X_N^{(i)})$ with $X_N^{(i)} \sim X_n$ i.i.d. to approximate $Z = \mathbb{E}[X(T)]$. We define the computational cost of the Monte Carlo estimator \hat{Z} as

$$\mathrm{cost} = \mathcal{O}(\mathrm{number\ of\ time\ steps} \times \mathrm{number\ of\ sample\ paths}) = \mathcal{O}\Big(\frac{M}{\Delta t}\Big),$$

and we say that the estimator has accuracy $\epsilon > 0$ if $\sqrt{\text{MSE}(\hat{Z})} = \mathcal{O}(\epsilon)$.

- i) Compute the optimal values of M and Δt that minimize the computational cost $\eta = M/\Delta t$, subject to a fixed accuracy ϵ ; derive the corresponding cost of the Monte Carlo estimator as a function of ϵ in this case. (Hint: Solve a constrained optimization problem in $(M, \Delta t)$, where the variable M is treated as a positive real number)
- ii) Implement this estimator to compute $\mathbb{E}[(X(T)-K)_+]$ where X_t solves the SDE

$$dX_t = rX_t dt + \sigma X_t dW_t.$$

Use $T=1, X_0=1, K=100, r=0.05, \sigma=0.01$. Choose a sequence of tollerance $\varepsilon=0.1, 0.05, 0.025, 0.0125, \ldots$ For each ε , find the "nearly optimal" $M=M(\varepsilon)$ and $\Delta t=\Delta t(\varepsilon)$ and estimate the MSE by repeiting the simulation several times (the exact value of Z can be computed analytically). Plot the (estimated) MSE versus ε^2 and versus η . Comment the results.

Solution

i) If the method has a weak order $p \ge 1$, then we have $MSE(\hat{Z}) = \mathcal{O}(\frac{1}{M} + (\Delta t)^{2p})$. Hence, as we want $\sqrt{MSE} = \mathcal{O}(\epsilon)$, it is sufficient to have $M^{-1} = \mathcal{O}(\epsilon^2)$ and $\Delta t = \mathcal{O}(\epsilon^{1/p})$. The cost is in this case

$$cost = \mathcal{O}(\Delta t^{-1} \cdot M) = \mathcal{O}(\epsilon^{-1/p} \cdot \epsilon^{-2}) = \mathcal{O}(\epsilon^{-(2+1/p)}).$$

Assuming that the MSE satisfies MSE $\leq C_1 M^{-1} + C_2 (\Delta t)^{2p} \leq \varepsilon^2$ for some $C_1, C_2 > 0$, we could define the following optimization problem:

$$\min_{M \to t} \frac{M}{\Delta t} \text{ s.t. } C_1 M^{-1} + C_2 (\Delta t)^{2p} \leqslant \varepsilon^2.$$

Defining the Lagrangian $\mathcal{L}(M, \Delta t) = M(\Delta t)^{-1} + \lambda (C_1 M^{-1} + C_2 (\Delta t)^{2p})$ we have

$$\frac{\partial \mathcal{L}(M,\Delta t)}{\partial M} = \Delta t^{-1} - \lambda C_1 M^{-2} = 0, \quad \frac{\partial \mathcal{L}(M,\Delta t)}{\partial \Delta t} = M \Delta t^{-2} + 2p\lambda C_2 \Delta^{2p-1} = 0,$$

which implies

$$\lambda = \frac{M^2}{C_1 \Delta t} = \frac{M}{2pC_2(\Delta t)^{2p+1}}$$

and, hence,

$$C_2(\Delta t)^p = \frac{C_1}{M}.$$

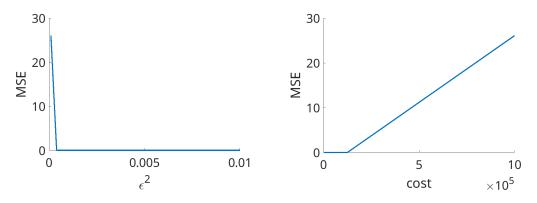


Figure 1: MSE with respect to ε^2 and the cost implementing a Euler-Maruyama method.

This solution is quite obvious, the optimal choice consists in balancing the two terms. Without loss of generalities, assume $C_1 = C_2$. So $\eta = M \Delta t^{-1} = M M^{\frac{1}{2p}} = M^{\frac{1+2p}{2p}}$, which gives $M = \eta^{\frac{2p}{1+2p}}$ and $\Delta t = \eta^{-\frac{1}{1+2p}}$. Therefore, we conclude that $\text{MSE} = \mathcal{O}(M^{-1}) = \mathcal{O}(\eta^{-\frac{2p}{1+2p}})$, which implies $\sqrt{\text{MSE}} = \mathcal{O}(\eta^{-\frac{p}{1+2p}})$.

ii) The plots are shown in Figure

Exercise 2.

Implement the MLMC method for the Euler-Maruyama scheme with L levels. Consider the SDE on [0,T]

$$dX(t) = \lambda X(t)dt + \mu X(t)dW(t),$$

$$X(0) = X_0,$$
(2.1)

with $\lambda=1, \ \mu=0.1, \ T=1, \ X_0=0.1$ and the function $\phi(x)=x$. Take a sequence of discretizations with $\Delta t_\ell=2^{-\ell}$.

- i) Plot the variances $\operatorname{Var}(\phi_{\ell})$ and $V_{\ell} := \operatorname{Var}(\phi_{\ell} \phi_{\ell-1})$, as well as $B_{\ell} = |\mathbb{E}[\phi_{\ell} \phi]|$, as a function of the level $\ell = 0, \dots, 10$. Estimate these quantities by Monte Carlo with sufficient samples.
- ii) From the previous point, fit models $V_{\ell} \approx C_v \Delta t_{\ell}^{\beta}$ and $B_{\ell} \approx C_b \Delta t^{\alpha}$. Verify that $\beta \approx 1$ and $\alpha \approx 1$. For a fixed $L \in \{3, \dots, 10\}$ estimate the bias accuracy $\varepsilon = |\mathbb{E}[\phi_L \phi]|$ and consider the choice of sample sizes $M_{\ell} = \varepsilon^{-2} L V_{\ell} \approx L \frac{C_v \Delta_{\ell}^{\beta}}{C_v^2 \Delta_{\ell}^{2\alpha}}, \ \ell = 0, \dots, L$.
- iii) Run several times the MLMC algorithm with the choices of M_ℓ from the previous point. Estimate and plot the MSE of the MLMC method for different values of $L=3,\ldots,10$ as a function of the computational cost $\sum_{\ell=0}^L M_\ell \Delta t_\ell^{-1}$. (The exact value $\mathbb{E}[\phi]$ can be computed analytically). Moreover, estimate and plot on the same figure the MSE of the standard Monte–Carlo method corresponding to (roughly) the same computational costs.
- iv) For a given L, find optimal values of $\{M_\ell\}_{\ell=0}^L$ that minimize the cost $\sum_{\ell=0}^L M_\ell \Delta t_\ell^{-1}$, subject to a fixed accuracy ε . (Treat the variables M_ℓ as positive real numbers to solve this constrained optimization problem). Derive the correspoding computational cost of the MLMC estimator as a function of ε . Repeat the previous point with this choice of sample sizes and compare the results.

Solution

The requested plots are given in Figure 2. We estimate point i) with a Monte-Carlo method of samples $M_l \approx 10^6$ for each l.

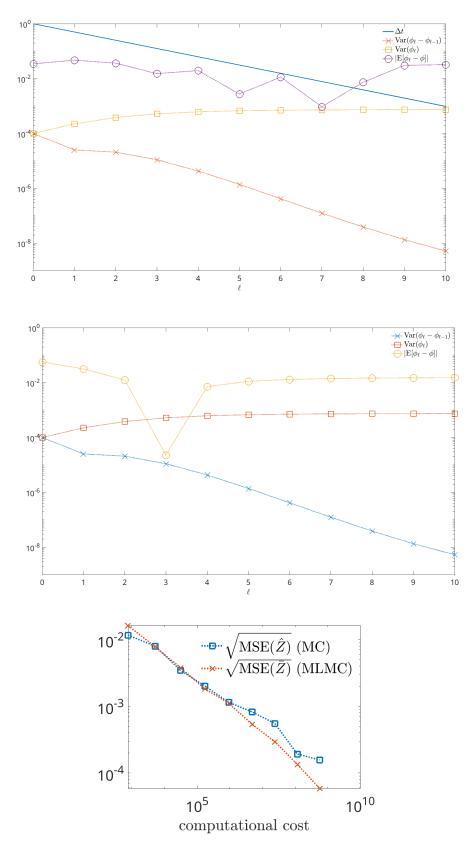


Figure 2: Variances and bias as a function of the level (above - point i), and intermediate - ii)) . MSE as a function of the computational cost (below).

Instead, considering the point iv), please refer to the Lecture of the course concerning Monte-Carlo and Multilevel Monte-Carlo, where the expression of the optimal M_l^* is given by

$$M_l^* = \varepsilon^{-2} \sqrt{\frac{v_l}{c_l}} \left(\sum_{k=0}^L \sqrt{vkc_k} \right). \tag{2.2}$$

After having substituting the values of c_l and v_l in (2.2), we find that $M_l^* \approx M_\ell$, the chosen sample size of point ii).

Exercise 3.

Consider the SDE on [0, 1]

$$dX(t) = \lambda X(t)dt + \mu X(t)dW(t),$$

$$X(0) = X_0,$$
(3.1)

where $\lambda, \mu \in \mathbb{R}$ are such that the solution is mean square stable, i.e., $\lambda + \mu^2/2 < 0$ (see Exercise 4 of Series 11). Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be a Lipschitz function and approximate $\phi(X(1))$ with MLMC and the Euler–Maruyama method.

i) The Euler–Maruyama method has a step size restriction when applied to (3.1), i.e., Δt has to be chosen below a threshold $\Delta t_{\rm EM}$ for the method to be mean-square stable. What is the value of $\Delta t_{\rm EM}$? What is the minimum level $\ell_{\rm EM}$ which can be employed?

The MLMC estimator is then given by

$$\widehat{E} = \sum_{\ell = \ell_{\rm EM}}^L \frac{1}{M_\ell} \sum_{i=1}^{M_\ell} (\phi_\ell^{(i)} - \phi_{\ell-1}^{(i)}).$$

Moreover, we remark that if the most refined level L for attaining the desired tolerance is such that $l_{\rm EM} \geqslant L$, then a simple Monte Carlo method with time step $\Delta t_{\rm EM}$ is employed.

ii) Consider the following definition for the number of trajectories

$$M_{\ell} = \begin{cases} 2^{2L-\ell}(L-\ell_{\mathrm{EM}}) & \text{if } \ell=\ell_{\mathrm{EM}}+1,\ldots,L, \\ 2^{2L}(L-\ell_{\mathrm{EM}}) & \text{if } \ell=\ell_{\mathrm{EM}}. \end{cases}$$

How do you choose L such that the MSE of the MLMC estimator is $\mathcal{O}(\varepsilon^2)$? What is the computational cost in this case?

- iii) Modify the implementation of MLMC in Exercise 2 to take into account the considerations above. Set $\phi(x) = x$ and apply the method to equation (3.1) with $\lambda \in \{-10, -50, -250\}$, $\mu = \sqrt{-\lambda}$ and $X_0 = 1$. Consider $L \in \{1, 2, ..., 10\}$ and plot the computational cost as a function of the finest step size Δt_L . What do you observe?
- iv) Compare the previous results with those obtained with a standard MLMC applied to the drift implicit Euler Method (stochastic θ -method with $\theta = 1$), using all the levels.

Solution

i) The value of $\Delta t_{\rm EM}$ is given by considering the case $\theta = 0$ in the stochastic θ -method, i.e.

$$\Delta t_{\rm EM} = -\frac{2\lambda + \mu^2}{\lambda^2},$$

hence, if $\Delta t_{\rm EM} < 1$, some levels of the standard MLMC procedure are inaccessible and the minimum level is

$$l_{\rm EM} = \lceil |\log_2(\Delta t_{\rm EM})| \rceil.$$

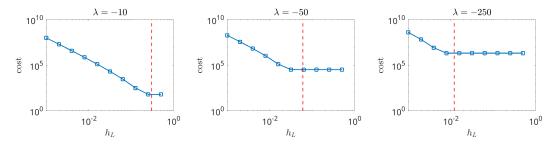


Figure 3: Computational cost as a function of the finest step size for different values of λ in Exercise 3. The red dotted lines represent the values of $\Delta t_{\rm EM}$.

ii) By the bias-variance decomposition of the MSE, we have

$$MSE(\hat{E}) = C\Delta t_L^2 + Var(\hat{E}),$$

where the variance is given by

$$\mathrm{Var}(\hat{E}) = \frac{\mathrm{Var}(\phi_{l_{\mathrm{EM}}})}{M_{l_{\mathrm{EM}}}} + \sum_{l=l_{\mathrm{EM}}+1}^{L} \frac{\mathrm{Var}(\phi_{l}-\phi_{l-1})}{M_{l}}.$$

Plugging the definition of M_l and recalling that $\text{Var}(\phi_l - \phi_{l-1}) \leqslant C\Delta t_l$, we have

$$\operatorname{Var}(\hat{E}) \leqslant \Delta t_L^2 \frac{\operatorname{Var}(\phi_{l_{\mathrm{EM}}})}{L - l_{\mathrm{EM}}} + C \Delta t_L^2.$$

Hence, since $\mathrm{Var}(\phi_{l_{\mathrm{EM}}}) = \mathcal{O}(1)$ in order to have $\mathrm{MSE}(\hat{E}) = \mathcal{O}(\varepsilon^2)$ we can choose $L = |\log_2(\epsilon)|$. The computational cost is then given by

$$\begin{split} \operatorname{Cost}(\hat{E}) &= 2^{2L} 2^{l_{\operatorname{EM}}} (L - l_{\operatorname{EM}}) + \sum_{l = l_{\operatorname{EM}} + 1}^{L} 2^{l} (L - l_{\operatorname{EM}}) 2^{2L - l} \\ &= 2^{2L} (L - l_{\operatorname{EM}}) \big((L - l_{\operatorname{EM}}) + 2^{l_{\operatorname{EM}}} \big) \\ &= \varepsilon^{-2} \log_2(\varepsilon) \Big(\frac{l_{\operatorname{EM}}}{L} - 1 \Big) \Big(\log_2(\varepsilon) \big(\frac{l_{\operatorname{EM}}}{L} - 1 \big) + \varepsilon^{-l_{\operatorname{EM}}/L} \Big) \\ &\leqslant C \varepsilon^{-2} \big(|\log_2(\varepsilon)|^2 + |\log_2(\varepsilon)| \varepsilon^{-l_{\operatorname{EM}}/L} \big). \end{split}$$

We see that for $l_{\rm EM} \to L$ we have ${\rm Cost}(\hat{E}) = \mathcal{O}(\varepsilon^{-3})$ as in the Monte Carlo case. Conversely, for $l_{\rm EM} \to 0$, the cost approaches the standard MLMC cost.

- iii) The plots are given in Figure 3.
- iv) The Implicit Euler Method is mean-square stable for each Δt if the original SDE is stable. Therefore, we do not need to modify the MLMC procedure. We choose the M_l as done in Exercise 2 and we consider the same tolerance ϵ of the previous point. The plots are given in Figure 4.

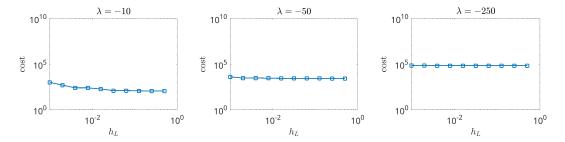


Figure 4: Computational cost for the implementation of MLMC with a Implicit Euler Method as a function of the finest step size for different values of λ in Exercise 3.