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Exercise 1.
Let {𝑋𝑛}𝑛⩾0 be the approximation of SDE

𝑑𝑋(𝑡) = 𝜆𝑋(𝑡)𝑑𝑡 + 𝜇𝑋(𝑡)𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇 ],
𝑋(0) = 𝑋0,

(1.1)

obtained employing the stochastic 𝜃-method with time step 𝛥𝑡. Consider 𝑇 = 500, 𝑋0 = 1, 𝜆 = −1.1, 𝜇 = 1.
For 𝜃 = 0, 1/2, 1, simulate E[𝑋2

𝑛] for 𝛥𝑡 = 2 and comment the results.

Solution
For the given data, the stochastic theta method with 𝜃 = 0, i.e. the Euler-Maruyama method, is not

mean-square stable. In fact, to satisfy this stability definition, the following condition has to be fulfilled

𝛥𝑡 <
−(2𝜆 + 𝜇2)
(1 − 2𝜃)𝜆2 = 0.99,

which is not the case for 𝛥𝑡 = 2.

Exercise 2.
Study the mean-square and asymptotic stability of the simplified weak 𝜃-scheme:

𝑌𝑛+1 = 𝑌𝑛 + 𝜃𝜇𝑌𝑛+1𝛥𝑡 + (1 − 𝜃)𝜇𝑌𝑛𝛥𝑡 + 𝜎𝑌𝑛𝛥𝑊̂𝑛 (2.1)

where 𝑊̂𝑛 is a r.v. such that P(𝛥𝑊̂𝑛 = ±
√

𝛥𝑡) = 1
2
.

Solution
We can rewrite (2.1) as

𝑌𝑛+1(1 − 𝜃𝜇𝛥𝑡) = 𝑌𝑛(1 + (1 − 𝜃)𝜇𝛥𝑡 + 𝜎𝛥𝑊̂𝑛) (2.2)

i.e.
𝑌𝑛+1 = 𝑌𝑛(𝑎 + 𝑏 ̂𝑉𝑛), (2.3)

with

𝑎 ∶= 1 + (1 − 𝜃)𝜇𝛥𝑡
(1 − 𝜃𝜇𝛥𝑡) , 𝑏 ∶= 𝜎

√
𝛥𝑡

(1 − 𝜃𝜇𝛥𝑡) , (2.4)

and P( ̂𝑉𝑛 = ±1) = 1
2
. The relations (2.4) give us the same conditions as the stochastic theta method for the

mean-square stability; in fact

E[𝑌 2
𝑛+1] = E[𝑌 2

𝑛 ](|𝑎|2 + |𝑏|2),

= E[𝑌 2
𝑛 ](

|1 + (1 − 𝜃)𝜇𝛥𝑡|2 + |𝜎|2𝛥𝑡
|1 − 𝜃𝜇𝛥𝑡|2

)
(2.5)

as E[ ̂𝑉𝑛] = 0 and E[ ̂𝑉 2
𝑛 ] = 1. Therefore, the method (2.1) is mean-square stable if and only if

|1 + (1 − 𝜃)𝜇𝛥𝑡|2 + |𝜎|2𝛥𝑡
|1 − 𝜃𝜇𝛥𝑡|2 < 1.
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Figure 1: Semilog plot of the mean-Square stability of the stochastic theta method applied to (1.1).

Instead, to consider asymptotically stability for (2.1) we rewrite 𝑌𝑛 as a recurrence

𝑌𝑛 = (
𝑛−1

∏
𝑖=0

𝑎 + 𝑏 ̂𝑉𝑖)𝑋0 = (
𝑛−1

∏
𝑖=0

𝑉𝑖)𝑋0 (2.6)

assuming 𝑋0 ⩾ 0 and 𝑋0 ≠ 0 with probability 1. Taking logarithms in (2.6) one gets log |𝑌𝑛| = log |𝑋0| +
∑𝑛−1

𝑖=0 log |𝑉𝑖|. Let 𝑍𝑖 = log |𝑉𝑖|, the sequence (𝑍𝑖)𝑖 satisfies the hypothesis of the law of large numbers, thus

1
𝑛

𝑛−1

∑
𝑖=0

𝑍𝑖 → E[𝑍1], as 𝑛 → ∞

with probability 1. Equation (2.1) is asymptotically stable if and only if E[𝑍1] < 0. Therefore

E[𝑍1] = E[log∣𝑎 + 𝑏 ̂𝑉1∣]

= E[log∣𝑎 + 𝑏 ̂𝑉1∣] = 1
2 log|𝑎 + 𝑏| + 1

2 log|𝑎 − 𝑏| = 1
2 log∣𝑎2 − 𝑏2∣

(2.7)

Therefore (2.1) is asymptotically stable if and only if |𝑎2 − 𝑏2| < 1.

Exercise 3.
Consider the two-dimensional stochastic differential equation:

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵𝑡, 𝑋0 = 𝑥0 (3.1)

where 𝐵𝑡 is a one-dimensional Brownian motion, and

𝑏(𝑥) = ( 𝑥2 cos 𝑥1
2𝑥1 sin 𝑥2

), 𝜎(𝑥) = ( 3 −0.3
−0.3 3 )𝑥.

1) Show that 𝑏 and 𝜎 satisfy a local Lipschitz condition as well as a monotonicity condition : ∃𝛽1, 𝛽2 ⩾
0, 𝑥⊤𝑏(𝑥) ⩽ 𝛽1|𝑥|2, |𝜎(𝑥)|2 ⩽ 𝛽2|𝑥|2. Deduce that this has a unique solution in 𝐿𝑝 for all 𝑝 ⩾ 2.
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2) Show that the solution is exponentially asymptotically stable.
Hint: Consider the Lyapunov function 𝑉 (𝑥) = |𝑥|2 = 𝑥2

1 + 𝑥2
2 and use the stability condition from

Theorem 1 of Lecture 10.

Solution

1) The diffusion term 𝜎(𝑥) is globally Lipschitz and satisfy the monotocinity condition as it is a linear
function. Concerning 𝑏(𝑥), we have

|𝑏(𝑥) − 𝑏(𝑦)| = ∣( 𝑥2 cos 𝑥1
2𝑥1 sin 𝑥2

) − ( 𝑦2 cos 𝑦1
2𝑦1 sin 𝑦2

)∣ = ∣( 𝑥2 cos 𝑥1 − 𝑦2 cos 𝑦1
2𝑥1 sin 𝑥2 − 2𝑦1 sin 𝑦2

)∣

= ∣( 𝑥2 cos 𝑥1 − 𝑦2 cos 𝑥1 + 𝑦2 cos 𝑥1 − 𝑦2 cos 𝑦1
2𝑥1 sin 𝑥2 − 2𝑦1 sin 𝑥2 + 2𝑦1 sin 𝑥2 − 2𝑦1 sin 𝑦2

)∣ ⩽ √2 + 2|𝑦||𝑥 − 𝑦|
(3.2)

which implies that 𝑏 is locally Lipschitz. Moreover

𝑥⊤𝑏(𝑥) = (𝑥1 𝑥2)( 𝑥2 cos 𝑥1
2𝑥1 sin 𝑥2

) = 𝑥1𝑥2 cos 𝑥1 + 2𝑥1𝑥2 sin 𝑥2 ⩽ 4|𝑥1𝑥2| ⩽ 2|𝑥|2. (3.3)

The well-posedness of (3.1) follows from Assumption (C) in Lecture 4. Indeed, one can prove the
existence and uniqueness of the solution for (3.1) via a truncating and Borel-Cantelli’s argument.

2) Let 𝑉 (𝑥, 𝑡) = |𝑥|2. It is easy to verify that

4.29|𝑥|2 ⩽ 𝐿𝑉 (𝑥, 𝑡) = 2𝑥1𝑥2 cos 𝑥1 + 4𝑥1𝑥2 sin 𝑥2 + |𝜎(𝑥)|2 ⩽ 13.89|𝑥|2

and
29.16|𝑥|2 ⩽ |𝑉𝑥(𝑥, 𝑡)𝜎(𝑥)|2 = |2𝑥𝑇𝜎(𝑥)|2 ⩽ 43.56|𝑥|4.

Applying Theorem 1 we obtain the following lower and upper bound for the sample Lyapunov exponents
of the solutions of equation (3.1)

−8.745 ⩽ lim inf
𝑡→∞

1
𝑡 log |𝑥(𝑡; 𝑡0, 𝑥0)| ⩽ lim sup

𝑡→∞

1
𝑡 log |𝑥(𝑡; 𝑡0, 𝑥0)| ⩽ −0.345

almost surely. Hence the trivial solution of equation (3.1) is almost surely exponentially stable.

Exercise 4.
Consider the linear SDE in R𝑑:

𝑑𝑋𝑡 = 𝐹𝑋𝑡𝑑𝑡 + 𝐺𝑋𝑡𝑑𝐵𝑡, 𝑡 > 0, 𝑋0 = 𝑥0 (4.1)

where 𝐹, 𝐺 ∈ R𝑑×𝑑 are commuting, diagonalizable matrices (i.e., they are simultaneously diagonalizable, i.e.
∃𝑉 ∈ R𝑑×𝑑 invertible s.t. 𝐹 = 𝑉 𝐷𝐹𝑉 −1, 𝐺 = 𝑉 𝐷𝐺𝑉 −1, with 𝐷𝐹, 𝐷𝐺 diagonal ).

1) Show that the solution of the solution of (4.1) is given by:

𝑋𝑡 = exp((𝐹 − 1
2𝐺2)𝑡 + 𝐺𝐵𝑡)𝑥0

Hint. You can verify it directly using Itô’s formula. Use the fact that 𝐹 and 𝐺 commute.

2) Assume that all the eigenvalues of 𝐹 − 1
2
𝐺2 have negative real parts. Show that the solution is

exponentially asymptotically stable.
Hint: Make a change of variables 𝑌𝑡 = 𝑉 −1𝑋𝑡 and show asymptotic stability for 𝑌𝑡.
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3) Find the condition on 𝐹 and 𝐺 under which the solution is exponentially mean square stable.

4) Analyze the mean square stability of the stochastic 𝜃-scheme for the SDE (4.1). Use complex numbers
for the eigenvalues.

Solution

1) Set
𝑌 (𝑡) = (𝐹 − 1

2𝐺2)𝑡 + 𝐺𝐵𝑡.

Define 𝛷(𝑡) ∶= exp(𝑌 (𝑡)). By the commuting condition, we compute the stochastic differential

𝑑𝛷(𝑡) = exp(𝑌 (𝑡))𝑑𝑌 (𝑡) + 1
2 exp(𝑌 (𝑡))(𝑑𝑌 (𝑡))2

= 𝛷(𝑡)𝑑𝑌 (𝑡) + 1
2𝛷(𝑡)(𝐺2)𝑑𝑡

= 𝐹𝛷(𝑡)𝑑𝑡 + 𝐺𝛷(𝑡)𝑑𝐵𝑡.

(4.2)

That is, 𝛷(𝑡) satisfies (4.1). Via the existence and uniqueness solution theorem for SDEs, we have that
𝛷(𝑡) is the unique solution of (4.1).

2) As all the eigenvalues of 𝐹 − 1
2
𝐺2 have negative real parts, there exists two positive constants 𝐶 and 𝜆

such that
∣exp[(𝐹 − 1

2𝐺2)𝑡]∣ ⩽ 𝐶𝑒−𝜆𝑡.

Then, it follows that |𝑌𝑡| ⩽ 𝐶|𝑥0| exp[−𝜆𝑡 + ‖𝐺‖|𝐵𝑡|] and using the property that lim
𝑡→+∞

|𝐵𝑡|
𝑡

= 0 a.s, we
have

lim sup
𝑡→+∞

1
𝑡 log |𝑌𝑡| ⩽ −𝜆.

3) Let 𝑌𝑡 = 𝑉 −1𝑋𝑡. Let 𝜇𝑖 be the eigenvalues of 𝐹 in the basis 𝑉, and 𝜎𝑖 the eigenvalues of 𝐺 in the same
basis, then 𝑌𝑡 = 𝐷𝑦0, 𝑦0 = 𝑉 −1𝑥0, with 𝐷 = diag(exp{𝜆1}, ⋯ , exp{𝜆𝑑}), where 𝜆𝑖 = (𝜇𝑖 − 1

2
𝜎2

𝑖 )𝑡+𝜎𝑖𝐵𝑡

and
‖𝑌𝑡‖2 = ∑

𝑖
exp{2Re(𝜆𝑖)}|𝑌0,𝑖|2 = ∑

𝑖
exp{2Re(𝜇𝑖 − 1

2𝜎2
𝑖 )𝑡 + Re(𝜎𝑖)𝐵𝑡}|𝑌0,𝑖|2.

Therefore,
E[‖𝑌𝑡‖2] = ∑

𝑖
exp(2Re(𝜇𝑖 − 1

2𝜎2
𝑖 )𝑡)E[exp{2Re(𝜎𝑖)𝐵𝑡}][‖𝑦0,𝑖‖2]

= ∑
𝑖

exp(2(Re(𝜇𝑖) + 1
2Re(𝜎𝑖)2 + 1

2 Im(𝜎𝑖)2)𝑡)[‖𝑦0,𝑖‖2]

= ∑
𝑖

exp(2(Re(𝜇𝑖) + 1
2(𝜎𝑖)2)𝑡)[‖𝑦0,𝑖‖2]

(4.3)

hence E[‖𝑌𝑡‖2] → 0 if and only if Re(𝜇𝑖) + 1
2
(𝜎𝑖)2 < 0 for all 𝑖.

4) The stochastic 𝜃-method for (4.1) reads as

𝑌𝑛+1 = 𝑌𝑛 + 𝜃𝐹𝑌𝑛+1𝛥𝑡 + (1 − 𝜃)𝐹𝑌𝑛𝛥𝑡 + 𝐺𝑌𝑛 ∘ 𝛥𝑊𝑛

= [𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1[[𝐼𝑑×𝑑 + (1 − 𝜃)𝐹𝛥𝑡]𝑌𝑛 + [𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1𝐺𝑌𝑛 ∘ 𝛥𝑊𝑛]
= [𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1[[𝐼𝑑×𝑑 + (1 − 𝜃)𝐹𝛥𝑡] + [𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1𝐺 ∘ 𝛥𝑊𝑛]𝑌𝑛,

(4.4)

which is well-defined if Re(𝜇𝑖) < 0 for all 𝑖, having

[𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡] = [𝑉 𝑉 −1 − 𝜃𝑉 𝐷𝐹𝑉 −1𝛥𝑡] = 𝑉 [𝐼𝑑×𝑑 − 𝜃𝐷𝐹𝛥𝑡]𝑉 −1.
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Considering 𝑉 −1𝑌𝑛, squaring and passing to the expectation we arrive to

E[∣𝑉 −1𝑌𝑛+1∣2] = E[𝑌 ⊤
𝑛+1𝑉 −⊤𝑉 −1𝑌𝑛+1]

= E[𝑌 ⊤
𝑛 ([𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1[[𝐼𝑑×𝑑 + (1 − 𝜃)𝐹𝛥𝑡] + [𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1𝐺 ∘ 𝛥𝑊𝑛]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐴

)
⊤

𝑉 −⊤

⋅ 𝑉 −1[𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1[[𝐼𝑑×𝑑 + (1 − 𝜃)𝐹𝛥𝑡] + [𝐼𝑑×𝑑 − 𝜃𝐹𝛥𝑡]−1𝐺 ∘ 𝛥𝑊𝑛]𝑌𝑛]
= E[E[𝑌 ⊤

𝑛 𝑉 −⊤𝐴⊤𝑉 −⊤𝑉 −1𝐴𝑉 −1𝑌𝑛]|𝑌𝑛]
= E[𝑌 ⊤

𝑛 𝑉 −⊤E[𝐴⊤𝑉 −⊤𝑉 −1𝐴|𝑌𝑛]𝑉 −1𝑌𝑛]] = E[𝑌 ⊤
𝑛 𝑉 −⊤E[𝐴⊤𝑉 −⊤𝑉 −1𝐴]𝑉 −1𝑌𝑛]]

= E[𝑌 ⊤
𝑛 𝑉 −⊤([𝐼𝑑×𝑑 − 𝜃𝐷𝐹𝛥𝑡]−1[𝐼𝑑×𝑑 + (1 − 𝜃)𝐷𝐹𝛥𝑡 + 𝐷𝐺

√
𝛥𝑡]⊤)

⋅ [𝐼𝑑×𝑑 − 𝜃𝐷𝐹𝛥𝑡]−1[𝐼𝑑×𝑑 + (1 − 𝜃)𝐷𝐹𝛥𝑡 + 𝐷𝐺
√

𝛥𝑡]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝐵

𝑉 −1𝑌𝑛]

= E[𝑌 ⊤
𝑛 𝑉 −⊤𝐵⊤𝐵𝑉 −1𝑌𝑛] = E[∣𝐵𝑉 −1𝑌𝑛+1∣2]

(4.5)
Therefore, the stochastic 𝜃-method is mean-square stable if and only if

|𝐵|2 = ∣[𝐼𝑑×𝑑 − 𝜃𝐷𝐹𝛥𝑡]−1[𝐼𝑑×𝑑 + (1 − 𝜃)𝐷𝐹𝛥𝑡 + 𝐷𝐺
√

𝛥𝑡]∣
2

< 1. (4.6)

Let 𝜇𝑖 be the eigenvalues of 𝐹 in the basis 𝑉, and 𝜎𝑖 the eigenvalues of 𝐺 in the same basis, then (4.6) is
equivalent to

max
𝑖

∣ (1 + (1 − 𝜃)𝜇𝑖𝛥𝑡 + 𝜎𝑖
√

𝛥𝑡)
(1 − 𝜃𝜇𝑖𝛥𝑡)

∣ < 1. (4.7)
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