Numerical Integration of Stochastic Differential Equations E PFL
Week 2024-12-02 to 2024-12-06 Prof. Fabio Nobile

Series 11 - December 4, 2024

Exercise 1.
Let {X,,},,>0 be the approximation of SDE
dX(t) = AX(t)dt + pX(t)dW,, te€]0,T], (1)
X(O) = XOa '

obtained employing the stochastic §-method with time step At. Consider T'= 500, Xq =1, A= —-1.1, p = 1.
For 6 = 0,1/2,1, simulate E[X2] for At = 2 and comment the results.

Solution

For the given data, the stochastic theta method with 6§ = 0, i.e. the Euler-Maruyama method, is not
mean-square stable. In fact, to satisfy this stability definition, the following condition has to be fulfilled

—(2A +p%)

A< T n

=0.99,

which is not the case for At = 2.

Exercise 2.
Study the mean-square and asymptotic stability of the simplified weak #-scheme:

Y1 =Y, 4 0uY, 1 At + (1 — 0)uY, At 4 oY, AW, (2.1)

where W, is a r.v. such that P(AW,, = +VAt) = %

Solution

We can rewrite (2.1) as

Yo (1= 0pAt) = Y, (14 (1 — 0)ut + 0 AW,,) (2.2)
i.e. ~
Yo =Y, (a+0V,), (2.3)
with
1 — A/
= M7 b= U—At, (2.4)
(1 —0uAt) (1—0uAt)

and P(V,, = £1) = % The relations (2.4) give us the same conditions as the stochastic theta method for the
mean-square stability; in fact
E[Y; ] =EN?](la® + [b%),
14 (1—0)uAt)? AY 2.5
(L 0= 0t + ] (25)
|1 — OuAt|2

as E[V,] = 0 and E[V}2] = 1. Therefore, the method (2.1) is mean-square stable if and only if

11+ (1 —0)uAt]? + |o|? At
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Figure 1: Semilog plot of the mean-Square stability of the stochastic theta method applied to (1.1).

Instead, to consider asymptotically stability for (2.1) we rewrite Y,, as a recurrence
n—1 n—1
Y, = (Ha+bm>X0 (H m)xo (2.6)
i=0 i=0

assuming X, > 0 and X # 0 with probability 1. Taking logarithms in (2.6) one gets log|Y,,| = log|X,| +
Z;:Ol log|V;|. Let Z; = log|V;], the sequence (Z;); satisfies the hypothesis of the law of large numbers, thus

n—1

1

— Z. E|Z

n; ; = E[Z], asn— oo

with probability 1. Equation (2.1) is asymptotically stable if and only if E[Z;] < 0. Therefore

E[Z,] = E[log|a + bV ]

S 1 1 1 (2.7)
= ]E[log‘a + bVl‘] =3 log|a + b| + 5 logla — b| = 3 log|a® — b?|
Therefore (2.1) is asymptotically stable if and only if |a? — b?| < 1.
Exercise 3.
Consider the two-dimensional stochastic differential equation:
dX, = b(X,)dt + o(X,)dB,, X, =, (3.1)

where B; is a one-dimensional Brownian motion, and

_ [ 20081 _ 3 —0.3
bz) = <2x1 sinx2>’ o(z) = <—0.3 3 )7
1) Show that b and o satisfy a local Lipschitz condition as well as a monotonicity condition : 35, 8y >
0, a'b(z) < Bi]z|? |o(z)|? < Bs]x]?. Deduce that this has a unique solution in L? for all p > 2.



2) Show that the solution is exponentially asymptotically stable.

Hint: Consider the Lyapunov function V(x) = |z|?> = 23 + 23 and use the stability condition from
Theorem 1 of Lecture 10.

Solution

1) The diffusion term o(z) is globally Lipschitz and satisfy the monotocinity condition as it is a linear
function. Concerning b(x), we have

. . T9 COS Ty . Yo COS Yq o
[b(z) = bly)| = ‘ (2331 sin x2> <2y1 sin y2>

2z sinxy — 2y, sinys

< L9 COST1 — Yo COSYq >

(3.2)
Lo COST1 — Yo COS T —+ Yo COST1 — Yo COS Yq
= < —
‘ (2961 sin 9 — 2y, sin x4 + 2y, sin x9 — 2y, sin y2> <22yl -yl
which implies that b is locally Lipschitz. Moreover
Ty COST .
x'b(z) = (v, ) (2;1 sinx12) = 129 COS Ty + 27Ty Sin Ty < 4|72 < 2|2)?. (3.3)

The well-posedness of (3.1) follows from Assumption (C) in Lecture 4. Indeed, one can prove the
existence and uniqueness of the solution for (3.1) via a truncating and Borel-Cantelli’s argument.

2) Let V(x,t) = |z|?. It is easy to verify that
4.29|2|? < LV (z,t) = 22,05 cos 11 + 43175 8in 25 + |o(2)|? < 13.89]2|?

and
29.16|z|% < |V, (z,t)o(2)|? = |22T0(2)|? < 43.56|x|*.

Applying Theorem 1 we obtain the following lower and upper bound for the sample Lyapunov exponents
of the solutions of equation (3.1)

—8.745 < litminf% log |x(;tg, xg)| < limsup % log |x(t;tg, xg)| < —0.345
—00

t—o0

almost surely. Hence the trivial solution of equation (3.1) is almost surely exponentially stable.

Exercise 4.
Consider the linear SDE in R%:

dX, = FX,dt + GX,dB,, t>0, X, =, (4.1)

where F, G € R%¢ are commuting, diagonalizable matrices (i.e., they are simultaneously diagonalizable, i.e.
3V € R4 invertible s.t. F = VDgV~!, G = VD,V with Dy, D diagonal ).

1) Show that the solution of the solution of (4.1) is given by:

X, = exp((F — %G2)t + GBt> Zg

Hint. You can verify it directly using It6’s formula. Use the fact that F and G commute.

2) Assume that all the eigenvalues of F — %GQ have negative real parts. Show that the solution is
exponentially asymptotically stable.

Hint: Make a change of variables Y; = V!X, and show asymptotic stability for Y;.



3)
4)

Find the condition on F and G under which the solution is exponentially mean square stable.

Analyze the mean square stability of the stochastic f-scheme for the SDE (4.1). Use complex numbers
for the eigenvalues.

Solution

1)

Set
Y(t) = (F - %Gz)t + GB;.
Define ®(t) := exp(Y (¢)). By the commuting condition, we compute the stochastic differential
AB(1) = exp(Y ()Y (t) + 3 exp(¥ (D)@Y (1))
=@(t)dY (t) + %@(t)(Gz)dt (42)
= Fo(t)dt + GD(t)dB,.

That is, §(t) satisfies (4.1). Via the existence and uniqueness solution theorem for SDEs, we have that
&(t) is the unique solution of (4.1).

As all the eigenvalues of F' — %Gz have negative real parts, there exists two positive constants C' and A

such that )
exp[(F — §G2>tH < Ce M,

Then, it follows that |Y;| < Clzg|exp[—At + |G||B,|] and using the property that hm

—+00

=0 a.s, we

|B:]
t

have
lim sup — log|Y;| < —A

t—+o0o

Let Y, = V71X,. Let p; be the eigenvalues of F in the basis V, and o; the eigenvalues of G in the same
basis, then Y, = Dy, yo = V "1y, with D = diag(exp{\; }, -, exp{\s}), where \; = (uz — —U )t+o B,
and

IV = 3 exp 2ReON Yol = 3 exp{2Re s — 502 )+ Re(on) BHYo.

Therefore,

BV = 3 exp(2Re (s — 502 ) ElexpizRe(o) Bl )

= Zexp( (Re i) + ;Re( )2+ %Im(gi)2>t> [lyo,il1?] (4.3)
= Zexp( (Re i) + ;(01)2)t> [yo,:11°]

hence E[|Y;|?] — 0 if and only if Re(y;) + %(ai)Q < 0 for all 4.

The stochastic 8-method for (4.1) reads as

Y, 1 =Y, +0FY, At + (1 — 0)FY, At + GY, o AW,
= [Lgxqg — OF At] 7 [[Igua + (1 = O)FAL)Y,, + [Ig.q — OF At]7'GY,, 0 AW, ] (4.4)
= [Lgua — OF At} [Igsq + (1 = O)FAY + [Igq — OF At} 7' G 0 AW, ]Y,,,

which is well-defined if Re(u;) < 0 for all ¢, having
[Lyg—OF At = [VV' — VDV At = V[Iyy — 0Dp AV



Considering V~'Y,,, squaring and passing to the expectation we arrive to

E[‘V71Yn+1‘2] =E[Y, VTV Y, ]

T

= E[YnT ([Idxd — GFAt]*l[[IdXd —+ (1 — Q)FAt] + [Idxd — GFAt]*lG o AWn]> ‘/_T
A

: V_l[ldxd - GFAt]_l [[Idxd + (1 - Q)FAt] + [Idxd - QFAﬂ_lG ° AWn]Yn]

=E[E[Y,]V TATV TV 1AV 1Y,]|Y,]
=E[Y,) V TE[ATV TV A,V 1Y, = E[Y,) V TE[ATV TV 1A]V-1Y, ]
=E[Y VT (Lixa — ODpA  [geq + (1= 0)DpAt + DV AYT)
[gea — ODpA 14 q + (1 — 0)DpAt + DoV A VY, ]
=B
—E[Y, V- TB BV-Y,] = IE“BV‘lYnH\Q]

(4.5)

Therefore, the stochastic #-method is mean-square stable if and only if

|Bl, = |[Laxa — 0DpAt " [Iyq + (1 — 0)DpAt + DaVAY| < 1. (4.6)

Let p; be the eigenvalues of F'in the basis V, and o; the eigenvalues of G in the same basis, then (4.6) is
equivalent to
(1+ (1 —0)u; At + 0,V At)

max 0= 0p.A0) < 1. (4.7
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