

Series 11 - December 4, 2024

Exercise 1.

Let $\{X_n\}_{n\geqslant 0}$ be the approximation of SDE

$$\begin{split} dX(t) &= \lambda X(t) dt + \mu X(t) dW_t, \quad t \in [0, T], \\ X(0) &= X_0, \end{split} \tag{1.1}$$

obtained employing the stochastic θ -method with time step Δt . Consider $T=500, X_0=1, \lambda=-1.1, \mu=1$. For $\theta=0,1/2,1$, simulate $\mathbb{E}[X_n^2]$ for $\Delta t=2$ and comment the results.

Solution

For the given data, the stochastic theta method with $\theta = 0$, i.e. the Euler-Maruyama method, is not mean-square stable. In fact, to satisfy this stability definition, the following condition has to be fulfilled

$$\Delta t < \frac{-(2\lambda + \mu^2)}{(1 - 2\theta)\lambda^2} = 0.99,$$

which is not the case for $\Delta t = 2$.

Exercise 2.

Study the mean-square and asymptotic stability of the simplified weak θ -scheme:

$$Y_{n+1} = Y_n + \theta \mu Y_{n+1} \Delta t + (1-\theta) \mu Y_n \Delta t + \sigma Y_n \Delta \hat{W}_n \tag{2.1}$$

where \hat{W}_n is a r.v. such that $\mathbb{P}(\Delta \hat{W}_n = \pm \sqrt{\Delta t}) = \frac{1}{2}$.

Solution

We can rewrite (2.1) as

$$Y_{n+1}(1-\theta\mu\Delta t) = Y_n\Big(1+(1-\theta)\mu\Delta t + \sigma\Delta\hat{W}_n\Big) \tag{2.2}$$

i.e.

$$Y_{n+1} = Y_n \left(a + b\hat{V}_n \right), \tag{2.3}$$

with

$$a := \frac{1 + (1 - \theta)\mu\Delta t}{(1 - \theta\mu\Delta t)}, \quad b := \frac{\sigma\sqrt{\Delta t}}{(1 - \theta\mu\Delta t)},$$
(2.4)

and $\mathbb{P}(\hat{V}_n = \pm 1) = \frac{1}{2}$. The relations (2.4) give us the same conditions as the stochastic theta method for the mean-square stability; in fact

$$\mathbb{E}[Y_{n+1}^2] = \mathbb{E}[Y_n^2](|a|^2 + |b|^2),$$

$$= \mathbb{E}[Y_n^2] \left(\frac{|1 + (1 - \theta)\mu\Delta t|^2 + |\sigma|^2 \Delta t}{|1 - \theta\mu\Delta t|^2} \right)$$
(2.5)

as $\mathbb{E}[\hat{V}_n] = 0$ and $\mathbb{E}[\hat{V}_n^2] = 1$. Therefore, the method (2.1) is mean-square stable if and only if

$$\frac{|1+(1-\theta)\mu\Delta t|^2+|\sigma|^2\Delta t}{|1-\theta\mu\Delta t|^2}<1.$$

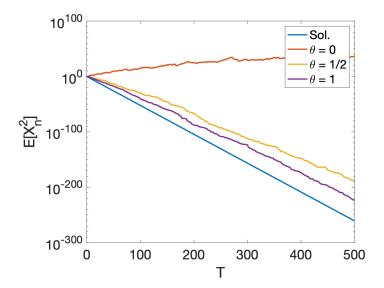


Figure 1: Semilog plot of the mean-Square stability of the stochastic theta method applied to (1.1).

Instead, to consider asymptotically stability for (2.1) we rewrite Y_n as a recurrence

$$Y_n = \left(\prod_{i=0}^{n-1} a + b\hat{V}_i\right) X_0 = \left(\prod_{i=0}^{n-1} V_i\right) X_0$$
 (2.6)

assuming $X_0 \ge 0$ and $X_0 \ne 0$ with probability 1. Taking logarithms in (2.6) one gets $\log |Y_n| = \log |X_0| + \sum_{i=0}^{n-1} \log |V_i|$. Let $Z_i = \log |V_i|$, the sequence $(Z_i)_i$ satisfies the hypothesis of the law of large numbers, thus

$$\frac{1}{n} \sum_{i=0}^{n-1} Z_i \to \mathbb{E}[Z_1], \quad \text{as } n \to \infty$$

with probability 1. Equation (2.1) is asymptotically stable if and only if $\mathbb{E}[Z_1] < 0$. Therefore

$$\begin{split} \mathbb{E}[Z_1] &= \mathbb{E}[\log \left| a + b\hat{V}_1 \right|] \\ &= \mathbb{E}[\log \left| a + b\hat{V}_1 \right|] = \frac{1}{2}\log |a + b| + \frac{1}{2}\log |a - b| = \frac{1}{2}\log |a^2 - b^2| \end{split} \tag{2.7}$$

Therefore (2.1) is asymptotically stable if and only if $|a^2 - b^2| < 1$.

Exercise 3.

Consider the two-dimensional stochastic differential equation:

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad X_0 = x_0 \tag{3.1}$$

where B_t is a one-dimensional Brownian motion, and

$$b(x) = \begin{pmatrix} x_2 \cos x_1 \\ 2x_1 \sin x_2 \end{pmatrix}, \quad \sigma(x) = \begin{pmatrix} 3 & -0.3 \\ -0.3 & 3 \end{pmatrix} x.$$

1) Show that b and σ satisfy a local Lipschitz condition as well as a monotonicity condition: $\exists \beta_1, \beta_2 \geqslant 0$, $x^{\top}b(x) \leqslant \beta_1|x|^2$, $|\sigma(x)|^2 \leqslant \beta_2|x|^2$. Deduce that this has a unique solution in L^p for all $p \geqslant 2$.

2) Show that the solution is exponentially asymptotically stable.

Hint: Consider the Lyapunov function $V(x) = |x|^2 = x_1^2 + x_2^2$ and use the stability condition from Theorem 1 of Lecture 10.

Solution

1) The diffusion term $\sigma(x)$ is globally Lipschitz and satisfy the monotocinity condition as it is a linear function. Concerning b(x), we have

$$\begin{aligned} |b(x) - b(y)| &= \left| \begin{pmatrix} x_2 \cos x_1 \\ 2x_1 \sin x_2 \end{pmatrix} - \begin{pmatrix} y_2 \cos y_1 \\ 2y_1 \sin y_2 \end{pmatrix} \right| = \left| \begin{pmatrix} x_2 \cos x_1 - y_2 \cos y_1 \\ 2x_1 \sin x_2 - 2y_1 \sin y_2 \end{pmatrix} \right| \\ &= \left| \begin{pmatrix} x_2 \cos x_1 - y_2 \cos x_1 + y_2 \cos x_1 - y_2 \cos y_1 \\ 2x_1 \sin x_2 - 2y_1 \sin x_2 + 2y_1 \sin x_2 - 2y_1 \sin y_2 \end{pmatrix} \right| \leqslant \sqrt{2 + 2|y|} |x - y| \end{aligned}$$
(3.2)

which implies that b is locally Lipschitz. Moreover

$$x^{\top}b(x) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} x_2 \cos x_1 \\ 2x_1 \sin x_2 \end{pmatrix} = x_1 x_2 \cos x_1 + 2x_1 x_2 \sin x_2 \leqslant 4|x_1 x_2| \leqslant 2|x|^2.$$
 (3.3)

The well-posedness of (3.1) follows from Assumption (C) in Lecture 4. Indeed, one can prove the existence and uniqueness of the solution for (3.1) via a truncating and Borel-Cantelli's argument.

2) Let $V(x,t) = |x|^2$. It is easy to verify that

$$4.29|x|^2 \leqslant LV(x,t) = 2x_1x_2\cos x_1 + 4x_1x_2\sin x_2 + |\sigma(x)|^2 \leqslant 13.89|x|^2$$

and

$$29.16|x|^2 \leqslant |V_x(x,t)\sigma(x)|^2 = |2x^T\sigma(x)|^2 \leqslant 43.56|x|^4.$$

Applying Theorem 1 we obtain the following lower and upper bound for the sample Lyapunov exponents of the solutions of equation (3.1)

$$-8.745\leqslant \liminf_{t\to\infty}\frac{1}{t}\log|x(t;t_0,x_0)|\leqslant \limsup_{t\to\infty}\frac{1}{t}\log|x(t;t_0,x_0)|\leqslant -0.345$$

almost surely. Hence the trivial solution of equation (3.1) is almost surely exponentially stable.

Exercise 4.

Consider the linear SDE in \mathbb{R}^d :

$$dX_t = FX_t dt + GX_t dB_t, \quad t > 0, \ X_0 = x_0$$
 (4.1)

where $F, G \in \mathbb{R}^{d \times d}$ are commuting, diagonalizable matrices (i.e., they are simultaneously diagonalizable, i.e. $\exists V \in \mathbb{R}^{d \times d}$ invertible s.t. $F = VD_FV^{-1}$, $G = VD_GV^{-1}$, with D_F , D_G diagonal).

1) Show that the solution of the solution of (4.1) is given by:

$$X_t = \exp\Bigl((F - \frac{1}{2}G^2)t + GB_t\Bigr)x_0$$

Hint. You can verify it directly using Itô's formula. Use the fact that F and G commute.

2) Assume that all the eigenvalues of $F - \frac{1}{2}G^2$ have negative real parts. Show that the solution is exponentially asymptotically stable.

Hint: Make a change of variables $Y_t = V^{-1}X_t$ and show asymptotic stability for Y_t .

- 3) Find the condition on F and G under which the solution is exponentially mean square stable.
- 4) Analyze the mean square stability of the stochastic θ -scheme for the SDE (4.1). Use complex numbers for the eigenvalues.

Solution

1) Set

$$Y(t) = \left(F - \frac{1}{2}G^2\right)t + GB_t.$$

Define $\Phi(t) := \exp(Y(t))$. By the commuting condition, we compute the stochastic differential

$$\begin{split} d\varPhi(t) &= \exp(Y(t))dY(t) + \frac{1}{2}\exp(Y(t))(dY(t))^2 \\ &= \varPhi(t)dY(t) + \frac{1}{2}\varPhi(t)(G^2)dt \\ &= F\varPhi(t)dt + G\varPhi(t)dB_t. \end{split} \tag{4.2}$$

That is, $\Phi(t)$ satisfies (4.1). Via the existence and uniqueness solution theorem for SDEs, we have that $\Phi(t)$ is the unique solution of (4.1).

2) As all the eigenvalues of $F - \frac{1}{2}G^2$ have negative real parts, there exists two positive constants C and λ such that

$$\left|\exp\left[\left(F-\frac{1}{2}G^2\right)t\right]\right|\leqslant Ce^{-\lambda t}.$$

Then, it follows that $|Y_t| \leq C|x_0| \exp[-\lambda t + \|G\||B_t|]$ and using the property that $\lim_{t\to +\infty} \frac{|B_t|}{t} = 0$ a.s, we have

$$\limsup_{t\to +\infty}\frac{1}{t}\log |Y_t|\leqslant -\lambda.$$

3) Let $Y_t = V^{-1}X_t$. Let μ_i be the eigenvalues of F in the basis V, and σ_i the eigenvalues of G in the same basis, then $Y_t = Dy_0$, $y_0 = V^{-1}x_0$, with $D = \text{diag}(\exp\{\lambda_1\}, \cdots, \exp\{\lambda_d\})$, where $\lambda_i = \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i B_t$ and

$$\|Y_t\|^2 = \sum_i \exp\{2\mathrm{Re}(\lambda_i)\}|Y_{0,i}|^2 = \sum_i \exp\{2\mathrm{Re}\Big(\mu_i - \frac{1}{2}\sigma_i^2\Big)t + \mathrm{Re}(\sigma_i)B_t\}|Y_{0,i}|^2.$$

Therefore,

$$\begin{split} \mathbb{E} \big[\|Y_t\|^2 \big] &= \sum_i \exp \Big(2 \mathrm{Re} \Big(\mu_i - \frac{1}{2} \sigma_i^2 \Big) t \Big) \mathbb{E} \big[\exp \{ 2 \mathrm{Re} (\sigma_i) B_t \} \big] \big[\|y_{0,i}\|^2 \big] \\ &= \sum_i \exp \Big(2 \Big(\mathrm{Re} (\mu_i) + \frac{1}{2} \mathrm{Re} (\sigma_i)^2 + \frac{1}{2} \mathrm{Im} (\sigma_i)^2 \Big) t \Big) \big[\|y_{0,i}\|^2 \big] \\ &= \sum_i \exp \Big(2 \Big(\mathrm{Re} (\mu_i) + \frac{1}{2} (\sigma_i)^2 \Big) t \Big) \big[\|y_{0,i}\|^2 \big] \end{split} \tag{4.3}$$

hence $\mathbb{E}[\|Y_t\|^2] \to 0$ if and only if $\operatorname{Re}(\mu_i) + \frac{1}{2}(\sigma_i)^2 < 0$ for all i.

4) The stochastic θ -method for (4.1) reads as

$$\begin{split} Y_{n+1} &= Y_n + \theta F Y_{n+1} \Delta t + (1-\theta) F Y_n \Delta t + G Y_n \circ \Delta W_n \\ &= [I_{d \times d} - \theta F \Delta t]^{-1} \big[[I_{d \times d} + (1-\theta) F \Delta t] Y_n + [I_{d \times d} - \theta F \Delta t]^{-1} G Y_n \circ \Delta W_n \big] \\ &= [I_{d \times d} - \theta F \Delta t]^{-1} \big[[I_{d \times d} + (1-\theta) F \Delta t] + [I_{d \times d} - \theta F \Delta t]^{-1} G \circ \Delta W_n \big] Y_n, \end{split} \tag{4.4}$$

which is well-defined if $Re(\mu_i) < 0$ for all i, having

$$[I_{d\times d}-\theta F\varDelta t]=[VV^{-1}-\theta VD_FV^{-1}\varDelta t]=V[I_{d\times d}-\theta D_F\varDelta t]V^{-1}.$$

Considering $V^{-1}Y_n$, squaring and passing to the expectation we arrive to

$$\mathbb{E}\Big[\big|V^{-1}Y_{n+1}\big|^{2}\Big] = \mathbb{E}\big[Y_{n+1}^{\top}V^{-T}V^{-1}Y_{n+1}\big] \\
= \mathbb{E}\big[Y_{n}^{\top}\left(\underbrace{\big[I_{d\times d} - \theta F \Delta t\big]^{-1}\big[\big[I_{d\times d} + (1-\theta)F\Delta t\big] + \big[I_{d\times d} - \theta F \Delta t\big]^{-1}G \circ \Delta W_{n}\big]}_{=:A}\right)^{\top}V^{-\top} \\
\cdot V^{-1}\big[I_{d\times d} - \theta F \Delta t\big]^{-1}\big[\big[I_{d\times d} + (1-\theta)F\Delta t\big] + \big[I_{d\times d} - \theta F \Delta t\big]^{-1}G \circ \Delta W_{n}\big]Y_{n}\Big] \\
= \mathbb{E}\big[\mathbb{E}\big[Y_{n}^{\top}V^{-\top}A^{\top}V^{-\top}V^{-1}AV^{-1}Y_{n}\big]\big]Y_{n}\Big] \\
= \mathbb{E}\big[Y_{n}^{\top}V^{-\top}\mathbb{E}\big[A^{\top}V^{-\top}V^{-1}A|Y_{n}\big]V^{-1}Y_{n}\big] = \mathbb{E}\big[Y_{n}^{\top}V^{-\top}\mathbb{E}\big[A^{\top}V^{-\top}V^{-1}A\big]V^{-1}Y_{n}\big]\Big] \\
= \mathbb{E}\big[Y_{n}^{\top}V^{-\top}\left(\big[I_{d\times d} - \theta D_{F}\Delta t\big]^{-1}\big[I_{d\times d} + (1-\theta)D_{F}\Delta t + D_{G}\sqrt{\Delta t}\big]V^{-1}Y_{n}\Big] \\
\cdot \underbrace{\big[I_{d\times d} - \theta D_{F}\Delta t\big]^{-1}\big[I_{d\times d} + (1-\theta)D_{F}\Delta t + D_{G}\sqrt{\Delta t}\big]}_{=:B}V^{-1}Y_{n}\Big] \\
= \mathbb{E}\big[Y_{n}^{\top}V^{-\top}B^{\top}BV^{-1}Y_{n}\big] = \mathbb{E}\big[\big|BV^{-1}Y_{n+1}\big|^{2}\big] \tag{4.5}$$

Therefore, the stochastic θ -method is mean-square stable if and only if

$$\left|B\right|_{2} = \left|\left[I_{d\times d} - \theta D_{F} \Delta t\right]^{-1} \left[I_{d\times d} + (1-\theta)D_{F} \Delta t + D_{G} \sqrt{\Delta t}\right]\right|_{2} < 1. \tag{4.6}$$

Let μ_i be the eigenvalues of F in the basis V, and σ_i the eigenvalues of G in the same basis, then (4.6) is equivalent to

$$\max_{i} \left| \frac{(1 + (1 - \theta)\mu_{i}\Delta t + \sigma_{i}\sqrt{\Delta t})}{(1 - \theta\mu_{i}\Delta t)} \right| < 1.$$
(4.7)