

Series 11 - December 4, 2024

Exercise 1.

Let $\{X_n\}_{n\geq 0}$ be the approximation of SDE

$$\begin{split} dX(t) &= \lambda X(t) dt + \mu X(t) dW_t, \quad t \in [0,T], \\ X(0) &= X_0, \end{split} \tag{1.1}$$

obtained employing the θ -method with time step Δt . Consider $T=500, X_0=1, \lambda=-1.1, \mu=1$. For $\theta=0,1/2,1$, simulate $\mathbb{E}[X_n^2]$ for $\Delta t=2$ and comment the results.

Exercise 2.

Study the mean-square and asymptotic stability of the simplified weak θ -scheme:

$$Y_{n+1} = Y_n + \theta \mu Y_{n+1} \Delta t + (1 - \theta) \mu Y_n \Delta t + \sigma Y_n \Delta \hat{W}_n$$

$$\tag{2.1}$$

with $\mathbb{P}(\Delta \hat{W}_n = \pm \sqrt{\Delta t}) = \frac{1}{2}$.

Exercise 3.

Consider the two-dimensional stochastic differential equation:

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad X_0 = x_0 \tag{3.1}$$

where B_t is a one-dimensional Brownian motion, and

$$b(x) = \begin{pmatrix} x_2 \cos x_1 \\ 2x_1 \sin x_2 \end{pmatrix}, \quad \sigma(x) = \begin{pmatrix} 3 & -0.3 \\ -0.3 & 3 \end{pmatrix} x.$$

- 1) Show that b and σ satisfy a local Lipschitz condition as well as a monotonicity condition : $\exists \beta_1, \beta_2 \ge 0$, $x^\top b(x) \le \beta_1 |x|^2$, $|\sigma(x)|^2 \le \beta_2 |x|^2$. Deduce that this has a unique solution in L^p for all $p \ge 2$.
- 2) Show that the solution is exponentially asymptotically stable.

Hint: Consider the Lyapunov function $V(x) = |x|^2 = x_1^2 + x_2^2$ and use the stability condition from Theorem 1 of Lecture 10.

Exercise 4.

Consider the linear SDE in \mathbb{R}^d :

$$dX_t = FX_t dt + GX_t dB_t, \quad t > 0, \ X_0 = x_0$$
 (4.1)

where $F, G \in \mathbb{R}^{d \times d}$ are commuting, diagonalizable matrices (i.e., they are simultaneously diagonalizable, i.e. $\exists V \in \mathbb{R}^{d \times d}$ invertible s.t. $F = VD_FV^{-1}$, $G = VD_GV^{-1}$, with D_F , D_G diagonal).

1) Show that the solution of the solution of (4.1) is given by:

$$X_t = \exp \biggl((F - \frac{1}{2}G^2)t + GB_t \biggr) x_0$$

Hint. You can verify it directly using Itô's formula. Use the fact that F and G commute.

- 2) Assume that all the eigenvalues of $F \frac{1}{2}G^2$ have negative real parts. Show that the solution is exponentially asymptotically stable.
 - ${\it Hint:}$ Make a change of variables $Y_t = V^{-1}X_t$ and show asymptotic stability for $Y_t.$
- 3) Find the condition on F and G under which the solution is exponentially mean square stable.
- 4) Analyze the mean square stability of the stochastic θ -scheme for the SDE (4.1). Use complex numbers for the eigenvalues.