Exercises for Statistical analysis of network data - Sheet 6

- 1. Consider the network of the complete graph K_n on n vertices. Recall that the graph Laplacian is given by $L = \text{diag}(d_1, \ldots, d_n) A = D A$ and that the normalized graph Laplacian is $\mathcal{L} = D^{-1/2} L D^{-1/2}$.
 - a) Calculate the degrees of this network by calculating $d = \mathbf{A1}$.

We note that the degrees are:

$$d = (\mathbf{J}_n - \mathbf{I}_n) \mathbf{1}$$
$$= (n-1)\mathbf{1}.$$

b) Calculate the graph Laplacian, and the normalized Laplacian for this network.

We have that

$$L = \operatorname{diag}(d_1, \dots, d_n) - (\mathbf{J}_n - \mathbf{I}_n)$$

= $(n-1)\mathbf{I}_n - (\mathbf{J}_n - \mathbf{I}_n)$
= $n\mathbf{I}_n - \mathbf{J}_n$.

In turn the normalized graph Laplacian takes the form of

$$\mathcal{L} = D^{-1/2}LD^{-1/2}$$

$$= \operatorname{diag}((n-1)^{-1/2}, \dots, (n-1)^{-1/2}) \{ n\mathbf{I}_n - \mathbf{J}_n \} \operatorname{diag}((n-1)^{-1/2}, \dots, (n-1)^{-1/2})$$

$$= \operatorname{diag}((n-1)^{-1}, \dots, (n-1)^{-1}) \{ n\mathbf{I}_n - \mathbf{J}_n \}.$$

c) For n=5, multiply the normalized Laplacian by $\mathbf{e}_1=\frac{1}{\sqrt{5}}\begin{pmatrix}1\\1\\1\\1\\1\end{pmatrix}$.

We find that

$$\mathcal{L}\mathbf{e}_{1} = \operatorname{diag}((n-1)^{-1}, \dots, (n-1)^{-1}) \left\{ n\mathbf{I}_{n} - \mathbf{J}_{n} \right\} \frac{1}{\sqrt{n}} \mathbf{1}$$

$$= \frac{1}{\sqrt{n}(n-1)} \left\{ n\mathbf{1} - n\mathbf{1} \right\} = 0. \tag{1}$$

This is an eigenvector with an eigenvalue of zero.

d) The characteristic equation of a matrix $\{\mathcal{L}\}$ is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \tag{2}$$

Solve this equation in λ for the complete graph on 3 nodes. Factorize the characteristic equation down to the level you are able to.

We wish to solve the equation

$$\|\operatorname{diag}((n-1)^{-1}, \dots, (n-1)^{-1}) \{ n\mathbf{I}_n - \mathbf{J}_n \} - \lambda \mathbf{I} \| = 0$$

$$\|\frac{1}{2} \left\{ \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right\} - \lambda \mathbf{I} \| = 0$$

$$\|\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix} - \lambda \mathbf{I} \| = 0$$

$$\|\begin{pmatrix} 1 - \lambda & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 - \lambda & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 - \lambda \end{pmatrix} \| = 0. \tag{3}$$

We therefore get

$$(1 - \lambda) \left((1 - \lambda)^2 - \frac{1}{4} \right) + \frac{1}{2} \left(-\frac{1}{2} (1 - \lambda) + \frac{1}{4} \right) - \frac{1}{2} \left(\frac{1}{4} + \frac{1}{2} (1 - \lambda) \right) = 0$$

$$(1 - \lambda)^3 - \frac{1}{4} (1 - \lambda) - \frac{1}{4} (1 - \lambda) + \frac{1}{8} - \frac{1}{8} - \frac{1}{4} (1 - \lambda) = 0$$

$$(1 - \lambda)^3 - \frac{3}{4} (1 - \lambda) = 0$$

$$(1 - \lambda) \left(1 - 2\lambda + \lambda^2 - \frac{3}{4} \right) = 0$$

$$(1 - \lambda) \left(\frac{1}{4} - 2\lambda + \lambda^2 \right) = 0. \tag{4}$$

The first root is $\lambda_0 = 1$. We have the final roots of $\lambda_0 = 1 \pm \sqrt{4-1} = 1 \pm \sqrt{3}$.

2. Consider a star on 4 nodes. The characteristic equation of a matrix \mathcal{L} is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \tag{5}$$

Factorize the characteristic equation down to the level you are able to in λ .

Note that a star on four nodes has the adjacency matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

The degree vector is $d = \begin{pmatrix} 1 & 1 & 1 & 3 \end{pmatrix}^T$. We therefore find that the Laplacian is

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}.$$

We can now calculate $\mathcal{L} = D^{-1/2}LD^{-1/2}$. We then have $D^{-1/2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/\sqrt{3} \end{pmatrix}$, and so we

have

$$\mathcal{L} = D^{-1/2}LD^{-1/2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/\sqrt{3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} & \sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/\sqrt{3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & -1/\sqrt{3} \\ 0 & 1 & 0 & -1/\sqrt{3} \\ 0 & 0 & 1 & -1/\sqrt{3} \\ -1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} & 1 \end{pmatrix}.$$

Then

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0$$

$$\|\begin{pmatrix} 1 - \lambda & 0 & 0 & -1/\sqrt{3} \\ 0 & 1 - \lambda & 0 & -1/\sqrt{3} \\ 0 & 0 & 1 - \lambda & -1/\sqrt{3} \\ -1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} & 1 - \lambda \end{pmatrix}\| = 0.$$
(6)

This equation becomes $(1-\lambda) \left| \begin{pmatrix} 1-\lambda & 0 & -1/\sqrt{3} \\ 0 & 1-\lambda & -1/\sqrt{3} \\ -1/\sqrt{3} & -1/\sqrt{3} & 1-\lambda \end{pmatrix} \right| + 1/\sqrt{3} \left| \begin{pmatrix} 0 & 1-\lambda & 0 \\ 0 & 0 & 1-\lambda \\ -1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \end{pmatrix} \right| = 0$

3. Take as the adjacency matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

a) Calculate the degrees of this network by calculating d = A1. We calculate

$$d = A\mathbf{1}$$

$$= \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \mathbf{1}$$

$$(8)$$

$$= \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}. \tag{9}$$

b) Calculate the graph Laplacian, and the normalized Laplacian for this network.

$$L = \operatorname{diag}(d_1, \dots, d_n) - \mathbf{A} \tag{10}$$

$$= 2\mathbf{I} - \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$(11)$$

$$= \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix}. \tag{12}$$

Thus

$$\mathcal{L} = D^{-1/2} L D^{-1/2} \tag{13}$$

$$= \frac{1}{2} \begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix}. \tag{14}$$

c) The characteristic equation of a matrix $\{\mathcal{L}\}$ is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \tag{15}$$

Solve this equation in λ . Factorize the characteristic equation down to the level you are able to.

$$\begin{pmatrix}
1 - \lambda & -1/2 & -1/2 & 0 & 0 & 0 \\
-1/2 & 1 - \lambda & -1/2 & 0 & 0 & 0 \\
-1/2 & -1/2 & 1 - \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 1 - \lambda & -1/2 & -1/2 \\
0 & 0 & 0 & -1/2 & 1 - \lambda & -1/2 \\
0 & 0 & 0 & -1/2 & -1/2 & 1 - \lambda
\end{pmatrix} = 0.$$
(16)

We can therefore solve

$$\begin{pmatrix} 1 - \lambda & -1/2 & -1/2 \\ -1/2 & 1 - \lambda & -1/2 \\ -1/2 & -1/2 & 1 - \lambda \end{pmatrix} = 0$$

$$(1-\lambda)((1-\lambda)^2-1/4)+(1/2)((-1/2)(1-\lambda)-1/4)-(1/2)(1/4+(1/2)(1-\lambda))=0.$$

d) For the values of λ determine the vectors of

$$\mathcal{L}\mathbf{e} = \lambda \mathbf{e}$$
.

This is a straightforward calculation following on from the eigenvalues.

4. Take as the adjacency matrix

a) Calculate the degrees of this network by calculating d = A1. We note that

b) Calculate the graph Laplacian, and the normalized Laplacian for this network. Follows the same steps as before.

c) The characteristic equation of a matrix $\{\mathcal{L}\}$ is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \tag{17}$$

Solve this equation in λ . Factorize the characteristic equation down to the level you are able to. Follows the same steps as before.

d) For the values of λ determine the vectors of

$$\mathcal{L}\mathbf{e} = \lambda \mathbf{e}$$
.

Follows the same steps as before.

- e) Describe how to implement spectral clustering.
 - Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$, number k = 2 of clusters to construct.
 - \bullet Compute the unnormalized Laplacian L.
 - Compute the first k eigenvectors v_1, \ldots, v_k of L
 - Let $V \in \mathbb{R}^{n \times k}$ be the matrix containing vectors v_1, \ldots, v_k as columns.
 - For i = 1, ..., n let y_i correspond to the *i*th row of V.
 - Cluster the points $(y_i)_i$ in \mathbb{R}^k with the k-means algorithm into clusters $\widetilde{C}_1, \ldots, \widetilde{C}_k$.
 - Outputs are clusters C_1, \ldots, C_k with

$$C_i = \{j | y_j \in \widetilde{C}_i\}.$$