Solutions for Statistical analysis of network data - Sheet 5

1. Consider the network with adjacency matrix

$$A_1 = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Please form the $n \times n$ symmetric matrix of all the distances between the nodes in this network. We note that

$$D = \left(\begin{array}{cccc} 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{array}\right)$$

The two centralities are $\begin{pmatrix} 1 & 1 & 4/3 & 4/5 \end{pmatrix}$ and $\begin{pmatrix} 5/2 & 5/2 & 3 & 2 \end{pmatrix}$.

2. Consider the network with adjacency matrix

$$A_2 = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

We note that

$$D = \left(\begin{array}{cccc} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{array}\right)$$

The two centralities are (2/3 1 1 2/3) and (1.8333 5/2 5/2 1.8333). The efficiency is 0.7222 .

3. Consider the network with adjacency matrix

$$A_3 = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array}\right).$$

We note that

$$D = \left(\begin{array}{ccccc} 0 & 2 & 2 & 2 & 1 \\ 2 & 0 & 2 & 2 & 1 \\ 2 & 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array}\right)$$

The two centralities are (0.5714 0.5714 0.5714 0.5714 1) and (5/2 5/2 5/2 5/2 4). The efficiency is 0.7 .

4. We can calculate the triangles using the formula

$$X_{C_3} = \frac{1}{6} \text{ trace } A^3, \quad X_{P_3} = \frac{1}{2} \sum_{i=1}^{n} d_i (d_i - 1)$$

We note $X_{C_3}\left(G_1\right)=1, X_{P_3}\left(G_1\right)=5$ and finally $CC_{G_1}=1/5$. For the second network $X_{C_3}\left(G_2\right)=0,$ $X_{P_3}\left(G_1\right)=2$ and finally $CC_{G_1}=0/2$. In the final case, $CC_{G_1}=0$.

1

5. Already calculated above.