Solutions for Statistical analysis of network data – Sheet 11

Here, 1 correspond to graph (a), 2 to (b) and 3 to (c). We list a few definitions that are helpful for any English longbowman that does not practice on Sundays:

- The *order* of a hypergraph is the number of nodes it has.
- In hypergraphs, if you have a hyperedge that connects a set of vertices, and another hyperedge that connects a subset of these vertices, the latter is said to be "included" in the former.
- A multiple edge occurs when there are two or more hyperedges connecting the same set of vertices.
- A hypergraph is *simple* if it has no multiple and induced edges.
- Nodes are adjacent if they are part of the same edge.
- The degree of a vertex is the cardinality of the set of edges it's belonging to.
- The *size* of an edge is its cardinality, i.e. its number of nodes.
- A hyper graph is *regular* is all its nodes have the same degree.
- A hyper graph is *uniform* is all its edges have the same cardinality.
- The rank of a hypergraph is the biggest edge cardinality in the hypergraph.
- 1. (a) Order = $6, n_{\text{edges}} = 11$.
 - (b) Included edges are edges that are a strict subset of another edge. Thus, edge $\{2,6\}$ in edge $\{2,4,6\}$ (top circle); edges $\{3,4\}$ and $\{5,6\}$ in edge $\{3,4,5,6\}$ (right-hand side circle); edges $\{1,5\}$ in edge $\{1,3,5\}$ (bottom circle); edges $\{3,4\}$ and $\{1,2\}$ in edge $\{1,2,3,4\}$ (lefthand side circle).
 - (c) A multiple edge occurs when there are two or more hyperedges connecting the same set of vertices. Node groups that are encircled, that is, $\{2,4,6\}$ (top circle), $\{3,4,5,6\}$ (right-hand side circle), $\{1,3,5\}$ (bottom circle), and $\{1,2,3,4\}$ (left-hand side circle).
 - (d) Graph (a) is not a simple graph: it has included edges as seen above as well as multiple edges.
 - (e) Not adjacent: 1 and 6,2 and 5. All other pairs are adjacent.
 - (f) Vertex 1: $d_1 = 5$, neighbourhood: $\{2, 3, 4, 5\}$
 - Vertex 2: $d_2 = 5$, neighbourhood: $\{1, 3, 4, 6\}$
 - Vertex 3: $d_3 = 5$, neighbourhood: $\{1, 2, 4, 5, 6\}$
 - Vertex 4: $d_4 = 5$, neighbourhood: $\{1, 2, 3, 5, 6\}$
 - Vertex 5: $d_5 = 4$, neighbourhood: $\{1, 3, 4, 6\}$
 - Vertex 6: $d_6 = 4$, neighbourhood: $\{2, 3, 4, 5\}$
 - (g) Edge list: $\{1,2\},\{1,3\},\{1,5\},\{2,4\},\{2,6\},\{3,4\},\{5,6\},\{2,4,6\},\{1,3,5\},\{3,4,5,6\},$ and $\{1,2,3,4\}.$ The last two have cardinality 4, the two before them have cardinality 3, the others have cardinality 2.
 - (h) $\Delta (\mathcal{H}_a) = 5$.
 - (i) Graph (a) is not regular (not all degrees are equal).
 - (j) Graph (a) is not uniform (not all edges have the same cardinality).
 - (k) The rank of graph correspond to the biggest cardinality of an edge in the hypergraph. Here, in (a), it is $r(\mathcal{H}_a) = 4$.
 - (l) Isolated nodes cannot be found in either of the graphs (a), (b) and (c). Graph (c) contains a pendant node, the other two does not.
 - (m) No singleton or empty edges can be found in any of the three graphs.
- 2. (a) Order = $5, n_{\text{edges}} = 8$.

- (b) Edge $\{1,2\}$ in edge $\{1,2,3\}$ and $\{1,2,5\}$; $\{1,3\}$ and $\{2,3\}$ are in edge $\{1,2,3\}$, $\{3,4\}$ and $\{4,5\}$ are in $\{3,4,5\}$
- (c) Node groups that are encircled.
- (d) Graph (a) is not a simple graph: it has included edges as seen above as well as multiple edges.
- (e) Not adjacent: 1 and 4,2 and 4. All other pairs are adjacent.
- (f) Vertex 1: $d_1 = 4$, neighbourhood: $\{2, 3, 5\}$
 - Vertex 2: $d_2 = 4$, neighbourhood: $\{1, 3, 5\}$
 - Vertex 3: $d_3 = 5$, neighbourhood: $\{1, 2, 4, 5\}$
 - Vertex 4: $d_4 = 3$, neighbourhood: $\{3, 5\}$
 - Vertex 5: $d_5 = 3$, neighbourhood: $\{1, 2, 3, 4\}$
- (g) Take the cardinality (i.e. number of nodes of question (b).
- (h) $\Delta (\mathcal{H}_b) = 5$.
- (i) Graph (b) is not regular (not all degrees are equal).
- (j) Graph (b) is not uniform (not all edges have the same cardinality).
- (k) The rank of graph (b) is $r(\mathcal{H}_a) = 3$.
- (l) Isolated nodes cannot be found in either of the graphs (a), (b) and (c). Graph (c) contains a pendant node, the other two does not.
- (m) No singleton or empty edges can be found in any of the three graphs.
- 3. (a) Order = $4, n_{\text{edges}} = 4$.
 - (b) Edges $\{2,3\}$ and $\{3,4\}$ in edge $\{2,3,4\}$.
 - (c) Node groups that are encircled.
 - (d) Graph (c) is not a simple graph: it has included edges as seen above as well as multiple edges.
 - (e) Not adjacent: 1 and 4. All other pairs are adjacent.
 - (f) Vertex 1: $d_1 = 1$, neighbourhood: $\{2\}$
 - Vertex 2: $d_2 = 3$, neighbourhood: $\{1, 3, 4\}$
 - Vertex 3: $d_3 = 3$, neighbourhood: $\{2,4\}$
 - Vertex 4: $d_4 = 2$, neighbourhood: $\{2,3\}$
 - (g) Edge list: $\{1,2\},\{2,3\},\{3,4\},\{2,3,4\}$ and the cardinality of each.
 - (h) $\Delta (\mathcal{H}_c) = 3$.
 - (i) Graph (c) is not regular (not all degrees are equal).
 - (j) Graph (c) is not uniform (not all edges have the same cardinality).
 - (k) The rank of graph (c) is $r(\mathcal{H}_a) = 3$.
 - (l) Isolated nodes cannot be found in either of the graphs (a), (b) and (c). Graph (c) contains a pendant node, the other two does not.
 - (m) No singleton or empty edges can be found in any of the three graphs.
 - (n) See Figure 1. for the two graphs. The edge set of the first is $e_1 = v_1v_2, e_2 = v_2v_3, e_3 = v_3v_4, e_4 = v_2v_3v_4$. The edge set of the second is $f_1 = w_1w_2, f_2 = w_2w_3, f_3 = w_3w_4, f_4 = w_1w_2w_3$. An isomorphism between the two is $\Phi(v_1) = w_4, \Phi(v_2) = w_3, \Phi(v_3) = w_2, \Phi(v_4) = w_1$. Since $\Phi(e_1) = w_3w_4 = f_3, \Phi(e_2) = w_2w_3 = f_2, \Phi(e_3) = w_1w_2 = f_1, \Phi(e_4) = w_1w_2w_3 = f_4$, and this constitutes a bijection, the two hypergraphs are isomorph.
 - (o) The incidence matrix of the graph on the left-hand side of Figure 1, using the same edge labeling as in point (xv), is

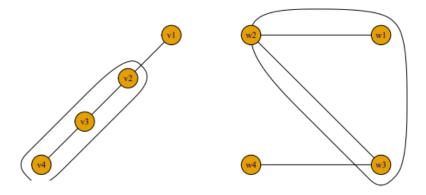


Figure 1: Isomorphism to different labelling.

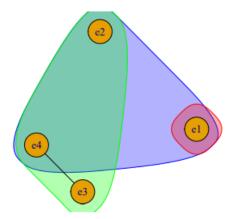


Figure 2: Dual of graph (c)

Its dual is the graph whose incidence matrix is the transpose of the above, that is,

$$I = egin{array}{c|cccc} & v_1 & v_2 & v_3 & v_4 \\ \hline e_1 & 1 & 1 & 0 & 0 \\ e_2 & 0 & 1 & 1 & 0 \\ e_3 & 0 & 0 & 1 & 1 \\ e_4 & 0 & 1 & 1 & 1 \end{array}$$

The resulting graph is shown in Figure 2. The former edges now become vertices (see labels on vertices). There is an edge now with a single node (corresponding to the former node v_1 , which was a pendant.