Exercises for Statistical analysis of network data - Sheet 10

1. For each pair of nodes, $Pr\{ij \text{ exists}\} = Pr\{ji \text{ exists}\} = \rho$. The situation is similar to asking for the distribution of the adjacency matrix of the projection of a multilevel network. The distribution is Bernoulli with the probability

$$\Pr\{ij \text{ exists or } ji \text{ exists}\} = \Pr\{ij \text{ exists and } ji \text{ does not exist}\}\$$

 $+ \Pr\{ij \text{ does not exist and } ji \text{ exists}\} + \Pr\{ij \text{ exists and } ji \text{ exists}\}\$
 $= 2\rho(1-\rho) + \rho^2.$

2. The "in"-graphon: $f^{(in)}(x) = 2x$, the "out"-graphon: $f^{(out)}(y) = 1$. There is a freedom to select the two functions, in principle $f^{(in)}(x) = 2\lambda x$ and $f^{(out)}(y) = \lambda^{-1}$ would do just as well.

Assume that the densities of in-edges and out-edges are $\rho^{(\text{in})}$ and $\rho^{(\text{out})}$, respectively. Then, using the notations and definitions of slide 17 of the lecture, and denoting the latent variable corresponding to node i by x_i , we can write $\pi_i^{(\text{in})} = 2\rho^{(\text{in})}x_i$ and $\pi_i^{(\text{out})} = \rho^{(\text{out})}$. Therefore, $A_{ij} \sim \text{Ber}(2x_i\rho^{(\text{in})}\rho^{(\text{out})})$. By the definitions of the in-degree and the out-degree as $d_i^{(\text{in})} = \sum_{j\neq i} A_{ij}$ and $d_i^{(\text{out})} = \sum_{j\neq i} A_{ji}$, it follows that

$$E\left\{d_{i}^{(\text{in})}\right\} = \sum_{j \neq i} E\left\{A_{ij}\right\} = 2(n-1)x_{i}\rho^{(\text{in})}\rho^{(\text{out})},$$

$$E\left\{d_{i}^{(\text{out})}\right\} = \sum_{j \neq i} E\left\{A_{ji}\right\} = \sum_{j \neq i} 2E\{x_{i}\}\rho^{(\text{in})}\rho^{(\text{out})} = (n-1)\rho^{(\text{in})}\rho^{(\text{out})},$$

$$\operatorname{Var}\left\{d_{i}^{(\text{in})}\right\} = \sum_{j \neq i} \operatorname{Var}\left\{A_{ij}\right\} = (n-1)2x_{i}\rho^{(\text{in})}\rho^{(\text{out})} \left(1 - 2x_{i}\rho^{(\text{in})}\rho^{(\text{out})}\right),$$

$$\operatorname{Var}\left\{d_{i}^{(\text{out})}\right\} = \sum_{j \neq i} \operatorname{Var}\left\{A_{ji}\right\} = (n-1)\rho^{(\text{in})}\rho^{(\text{out})} \left(1 - \rho^{(\text{in})}\rho^{(\text{out})}\right).$$