Solutions for Statistical analysis of network data — Sheet 1

1. This corresponds to just noting the edges:

(a)

(b)

(c)

(d)

(e)

(f)

0 1 1 0
1 0 1 0
A=1110 01
0 01 0
This has as edge list £y = {(1,2), (1,3),(2,3),(3,4)}, and is known as a tadpole graph.
0O 1 1 00
1 0 01 0
A, =11 0 0 1 1
01 1 0 O
0 01 0O
This has as edge list Ex = {(1,2), (1,3),(2,4),(3,4),(3,5)}, and is known as a tadpole graph.
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This has edge list 5 = {(1,2),(2,3),(3,4), }, and is known as a path. Paths are special cases of
trees, and have fewer edges than nodes.
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0 00 0 1
0O 0 0 0 1
As=]10 0 0 0 1
0 00 01
1 1 1 1 0
This has edge list £y = {(1,5),(2,5),(3,5),(4,5)}. This is a star, and is also a special case of a tree.
01 10
1 0 0 1
Ad=110 0 1
01 1 0
This has edge list F5 = {(1,2), (1,3),(2,4), (3,4)}. This is a 4-cycle.
01 0 0 O
1 01 0 O
As=10 1 0 1 1
0 01 00
0 01 00

This is a special case of a tree as the number of edges is less than the number of nodes. This has
edge list Fs = {(1,2),(2,3),(3,4),(3,5)}.

2. The plots are at the end of the document. Adjacency matrices are given by

(a) Ev ={(1,2),(1,3),(2,3)}. This has adjacency matrix

0 1 1
Ai=11 0 1
1 1 0



(b) E2 =1{(1,5),(2,5),(3,5),(4,5)}. This has adjacency matrix

A

I
o O OO
_ oo O OO
—_ o0 O OO
—_ o0 O OO
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(c) B3 =1{(1,2),(2,3),(3,4),(4,5)}. This has adjacency matrix

01 0 0 0
1 01 0 0
As=1[10 1 0 1 O
0 01 01
0 0010

(d) Es=1{(1,2),(2,3),(3,4),(4,5),(5,6),(6,1)}. This has adjacency matrix

010001
101000
010100

A=100101 0
00010 1
1 00010

A good check on whether something has been tabulated correctly is to take A— AT. As the adjacency
matrix is symmetric, this will normally uncover errors.
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Figure 1: Plots of the graphs.

3. Assume that a;; is generated from an Erdés-Rényi network with edge probability p.
(a) Using moment generating functions we can note that the sum of n — 1 independent Bernoullis is
Bin(n — 1, p).
(b) The expectation of a binomial is (n — 1)p. The variance is (n — 1)p(1 — p).
(c) The dispersion is Var{d;}/E{d;} = (n —1)p(1 — p)/((n —1)p) =1 — p. We need p = o(1).

(d) For an inhomogeneous random graph we have what is known as a Poisson Binomial random variable,
which is the distribution of n — 1 Bernoullis with different success probabilities. The expectation is

> iz Pij and the variance is 37, pii(1 — pij).

ET = trace(E(A%))/6 =

Z Z Z E(aijajkaki).
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To determine the expectation we note that
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Therefore



