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Graphs or network data structures

@ This course concerns the stochastic properties of network data.

@ A network represents interactions between entities (nodes or vertices),
where the presence of an interaction is indicated by an edge.

@ We write a network or a graph as G, usually represented by an
adjacency matrix A. A;; where if node i and node j are linked Aj;
takes the value unity, otherwise it takes the value zero. A network can
also be represented by a list of edges, an edge list, that just specifies
the existing edges, e.g. {(1,15),(1,32),....}.

@ We usually write the collection of nodes as v(G) and the collection of
edges as e(G). We normally assume that |v(G)| = n if not specified
otherwise. We write G = (v(G), e(G)).

e A graph H = (v(H), e(H)) is a subgraph of G if v(H) C v(G) and
e(H) C e(G).
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Graphs or network data structures

© @

Labelled graphs or networks.
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Graphs or network data structures

o Additionally we define the incidence matrix C that catalogues the
relationships between nodes and edges. This Cj; is unity if vertex v;
and edge ¢; are incident.

@ A summary statistic defined from A the adjacency matrix is the
degree vector. This takes the form

di =) Aj.
J#i

@ In this course we shall consider simple and undirected networks. A
simple network is unweighted, e.g. the strength of a connection is not
weighting the adjacency matrix. Instead all weights are either zero or
unity. For example when looking at trade relationships between
countries it makes sense to report the magnitude of trade either by
weight or cost.

@ Some special graphs have names and symbols. The complete graph
on n nodes is written as K,,.

@ A cycle on n nodes is written C,,. Every node in a cycle has degree 2.
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Graphs or network data structures

@ A d-regular graph is a graph where all nodes have the same degree d.
Cycles are regular graphs.

@ A connected graph with no cycles is a tree. A disjoint union of such
graphs is a forest.
o A bipartite graph G = (v(G), e(G)) is one where the vertices can be

split into v1(G) and v»2(G), and where each edge has one endpoint in
vi(G) and the other in v»(G).
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Network data models

@ The simplest graph is an Erdés-Rényi network on n nodes with edge
probability 0 < p < 1. We write this as ER(n, p). The adjacency
matrix is generated element by element as

A; = Bernoulli(p), 1<j<i<n. (1)

where each realization is independent. Furthermore A;; = 0 for
1 </ < n, and we complete the matrix by A;; = Ajj for 1 <j < i <n.

@ The simplest generalization introduces n parameters m; and then
generates edges independently by

Ajj = Bernoulli(min(m;7;,1)), 1<j<i<n. (2)

where each realization is independent. Furthermore A;; = 0 for
1 </ < n, and we complete the matrix by A;; = Ajj for 1 <j < i< n.
This is known as Chung-Lu or the configuration model.
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Network data models

@ An Inhomogeneous Random Graph (Soderberg). This generates edges
independently by

Ajj = Bernoulli(p;), 1<j<i<n. (3)

where each realization is independent. Furthermore A;; = 0 for

1 <i < n, and we complete the matrix by A;; = A;j for 1 <j < i < n.
@ Some graphs display clear group structure. For each node i we define

a random variable z; that takes the value {1,..., k}, where this

variable is indicating the group membership of node /. We

additionally define a connection probability matrix © which has

entries O, for 1 < a< b < k. Then

Ajilzi, zi = Bernoulli(f,,5), 1<j<i<n. (4)

where each realization is independent. Furthermore A;; = 0 for
1 <i < n, and we complete the matrix by A;; = A;; for
1 <j < i< n. This is known as the stochastic block model.
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Network data models

@ Another generalization of the stochastic block model is the
mixed membship model (Airoldi, Fienberg and Xing). Generate latent
variable &; for each node i from the Dirichlet distribution of
dimension k with parameters a. Define ® = (6p4) and draw

Aij | €, &) ~ Ber(& ©)). (5)
@ The random dot product graph (RPDG) is a latent position model of

E{A;|E} = pn- & ¢,
where the latent position of node i, namely &; is generated by
probability density function (&).

@ Degree corrected stochastic block model. For each node i we define a
random variable z; that takes the value {1,..., k}, where this variable
is indicating the group membership of node /, and a latent uniform &;.
Define a connection probability matrix © which has entries 6, for
1 <a< b< k. Then with 1-d function g(x) we draw

Ajjlzi, zj, i, § = Bernoulli(0;,, + g(81)g(&5)), 1<j<i<n. (6)

where each realization is independent.
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Network data models

@ Most of these models fall in a more general framework of
permutation invariance. Thus if we introduce a permutation 1 that
remaps all indices, the nature of the model should not change.

o Let I1 be a permutation on the ordering, and let the repermuted
adjacency matrix be A™.

Definition

Permutation-invariance of the distribution holds when

Pr(A = a) = Pr(A" = a) for any permutation 1N and any adjacency matrix
A. That is, permuting the adjacency matrix does not change its
distribution. Then we say that the distribution is permutation-invariant.

Definition (Exchangeable arrays)

More generally, for any k > 1 we can consider an array of E-valued r.v.s
(Xe)eenv) indexed by size-k subsets of N, and say it is (jointly)

exchangeable if (Xe)e g (Xn(e))e VM € Sym(N), where if e = {ny,..., ny}
then M(e) := {N(n1),...,N(nk)}.
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Network data models

Theorem (Aldous Hoover)

An array A is jointly exchangeable, iff it has the same distribution as

Aj =, &,§,¢), 1< i<,

with f : R* — R and some iid random uniform variables «, &; and Gij-
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Network Statistics

@ A basic concept is to count the occurance of subgraphs in G. A
subgraph count simply corresponds to

Xe(G)= > I(F =F).
F'cG

Here = means 'isomorphic’ to, which means that F’ can be mapped
to F.

@ It has been shown that Xg(G) has an asymptotically Gaussian
distribution as long as F is a strictly balanced graph.

@ The functional t(F, G) is defined for two graphs F and G as the
proportion of all mappings V(F) — V/(G) that are
graph homomorphisms F — G, i.e., map adjacent vertices to
adjacent vertices.

@ In probabilistic terms, t(F, G) is the probability that a uniform
random mapping V(F) — V(G) is a graph homomorphism.
Assuming F is labelled and k = |v(F)| then we define

t(F,G) = Pr{F C G[K]}.
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@ Already for the Erdés—Renyi model we have discussed estimating
Ei<j Ajj
—_—
(2)
@ We can calculate the moments of this estimator. We have from the
independence of the trials

5=

Zi<j P
(2)
2i<iP(L=p) _ p(1—p)
5 = .
(5) (2)
@ Using standard Central Limit Theorems we can deduce that a function
of Z,<j Ajj becomes Gaussian if p is sufficiently large. We have

() 1) ;Au <>p 5 N(0,1).

Rucinski discusses under what conditions a Poisson limit follows.
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Network Statistics

@ For the Chung—Lu model we can now estimate

. d;

= — | =

T y = L1,...,
Vidl

@ We can with this model determine that d; becomes Gaussian under
suitable conditions.
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Network Statistics

@ We can now look at non—parametric statistics in this setting.
@ Often one wishes to determine how important a given vertex is.

@ We define the graph distance between nodes v and v in graph G:
distg(u, v) = minimal number of edges linking v and v.

If no path exists between v and v then the distance is set to infinity.

@ Then we define closeness centrality of vertex i in graph G with n
nodes as

n
S diste(isj)

@ We define the harmonic centrality of vertex i in graph G with n nodes

as 1
(H) _
G = ; distg(i,j)

Ci=
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Network Statistics

@ We define the betweenness centrality of vertex i in graph G with n
nodes in terms of ”}k as th enumber of shortest paths from j to k
that pass through i

B; = .

ni -’
Zigj,kgn ﬁi
@ We denote by Xp,(G) and X¢,(G) as the number of paths with three
nodes, and the number of cycles on three nodes respectively.

@ We can then define the clustering coefficient as

_ Xg(6)
CC¢ = m
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Network Statistics

@ Network modularity. We define the network modularity to be

|

" d;d;
=2 {5

i<y

@ This measures how well we have picked z.

o Given z we can estimate the connection probability:

N >i<j Ail(zi = a)l(z; = b)
Oab(2) = > |J(z,- = a)I(ZjJ: b)

@ We need to learn z from matrix A.

@ We shall use spectral clustering to this purpose.
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Network Statistics

@ We calculate the (unnormalized graph) Laplacian from the adjacency
matrix:

L = diag{di,...,ds} — A.

@ From this matrix we can define unnormalized spectral clustering.
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Network Statistics

Input: Adjacency matrix A € R™" and a fixed number of clusters k.
Compute the unnormalized Laplacian L.

Compute the first k eigenvectors vy, ..., vy of L.

Let V € R"*k be the matrix containing vectors vi, ..., v, as columns.
For i =1,...,n let y; correspond to the ith row of V.

Cluster the points (y;); in R¥ with the k-means algorithm into
clusters (1, ..., C.

Outputs are clusters Cy, ..., Cx with

CG={ily € G}.
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Network Statistics

Estimating interactions

I

PrL

@ There are various modifications of k-means. This leads to the
estimated labels Z;.

s SigAila = a)l(z = b)
Hab(Z) = Zi<j I(Zi = a)l(ZJ = b)

@ We can also define the combinatorial least squares problem:

ﬁmeMrme( a)l(zj = b).

zEZy

@ Least squares is normally computationally efficient; but the addition
of z makes this problem intractable.
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Network Statistics

@ For any two graphs G and G’ we have already met the Hamming or

edit distance

le(G)Aae(6)] _ IA(G) — A(G")llx

dl(Gv G/) = 2 2

Sometimes the matrix norm is divided by n(n — 1) as in networks
without self-loops the diagonal is set to zero.

@ The Hamming distance treats as uniform all changes in the graph
structure, whether they are addition in edges or deletions.

@ The distance is also sensitive to the edge density of the graphs.
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Network Statistics

@ To adapt to the sparsity we need to rescale the distance.
e We use Jaccard distance (Levandowsky and Winter (1971)):

_ IA(G) = A(G)Ih

d;(G,G') = IA(G) + A(G)]]+

where the latter is the nuclear norm.

@ Details were provided for calculating expected counts with the
blockmodels, and ERGMs were introduced.
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Latent Space Models

I

PrL

@ We can also assume (see e.g. Hoff (2002)) that conditionally on
unobserved latent variables z; (unobserved positions in a latent space)
and x;; we have

Pr{Alz,X,8) = | | Pr{ajlz, z, i, 0).
i<j
@ We can use the GLM parameterisation to do this.

@ Latent class/stochastic block model fits in this framework, latent
distance models and the latent eigenmodel.

@ The latent space model can be rewritten as a
random dot produce graph.
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ey = ] =
Network Sampling =PrL

@ Relational or edge sampling. Relational sampling corresponds to
sampling exactly relations or edges. This could be sampling phone
calls. In many networks applications the relations are the primitive
objects and the vertices are derivative from these.

@ Hyperedge sampling. Sampling academic articles from a research
repository involves more than actor in every relationship. Then every
article represents an hyperedge.

@ Path sampling. In the early days of network sciecne it was thought
that one could ascertain network topology by analyzing the paths
traversed when sending information from one part of the Internet to
another.

@ Snowball sampling.

o We discussed the
Preferential attachment network generative mechanism.
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Additional topics:

o Multilayer networks.

@ Directed networks.

@ Hypergraphs.

@ Link prediction.

o Biclustering problems.

@ Alternative forms of exchangeability.
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