

EPFL

Course: MATH-448 Setter: Olhede

EXAMINATIONS

August 2020

MATH-448

Statistical analysis of network data

Ecole Polytechnique Federale de Lausanne August 2020

MATH-448

Statistical analysis of network data

Date: Mock exam, 2020 Time: Mock exam, 3 h

All that can be used for this exam is a pen. No books, notes, summaries, formula collections or calculators are allowed. All questions should be answered.

All questions are marked out of a total of 1 point, bringing the total of the exam to a total of 5 points.

- 1. Assume we observe a network \mathcal{G} on five nodes which has edges (1,2), (2,3), (3,1), (2,4), (2,5) and (3,4).
 - (a) Plot this network and number the nodes in the diagram.
 - (b) Please write down the adjacency matrix of this network.
 - (c) Please write down the incidence matrix of this network.
 - (d) Determine the degree of each node.
 - (e) Determine the number of triangles in the network \mathcal{G} .
- 2. (i) Assume we observe a random graph \mathcal{G} with n nodes whose $n \times n$ adjacency matrix A is generated according to the following mechanism. Assume we generate n independent uniform random variables ξ_i . Then for function $0 \le g(x) \le 1$ A is generated by

$$\Pr\{A_{ij} = 1\} = g(\xi_i)g(\xi_j), \quad 1 \le i < j \le n. \tag{1}$$

- (a) Write down the degree of node i in terms of the entries of A. Calculate the expectation of this degree.
- (b) Calculate the variance of d_i .
- (c) Determine the covariance of the *i*th degree d_i with the *j*th degree d_j .
- (ii) (a) Write down the definition of a finitely exchangeable graph model.
 - (b) Show that the network model in part (a) is finitely exchangeable.
- 3. Consider a graph with adjacency matrix A on 5 nodes corresponding to

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

- (i) Form the $n \times n$ symmetric matrix of all the distances between the nodes in this network.
- (ii) Give the definition of and compute the closeness centrality (you do not have to simplify the expression).
- (ii) Give the definition of and compute the harmonic centrality (you do not have to simplify the expression).

- 4. Assume that we observe network \mathcal{G} with adjacency matrix A that are realized using the Bernoulli distribution conditionally on a group membership. We will assume that it is generated by the K group stochastic blockmodel with parameters h_k (size of group k), group membership vector $z_i \in \{1, \ldots, K\}$ for $i = 1, \ldots, n$, as well as interaction matrix $\{\theta_{ab}\}$ for $1 \le a \le b \le K$.
 - (i) Please write down the likelihood of this model.
 - (ii) Solve for θ_{ab} if z is known, this giving a maximum likelihood estimate conditionally on z. Form the profile likelihood by substituting in that estimate $\widehat{\theta}_{ab}(\widehat{z})$.
 - (iii) Describe how to estimate z using spectral clustering.

- 5. Assume that we observe a network $\mathcal G$ with adjacency matrix A that are realized using the Bernoulli distribution conditionally on a group membership and degree structure π . We will assume that it is generated by the K group stochastic blockmodel with parameters h_k (size of group k), group membership vector $z_i \in \{1,\ldots,K\}$ for $i=1,\ldots,n$, as well as interaction matrix $\{\theta_{ab}\}$ for $1 \leq a \leq b \leq K$, and that a degree correction is added on.
 - (i) Describe how to estimate the parameters of the degree–corrected Stochastic BlockModel (SBM) using maximum likelihood.
 - (ii) Calculate the expected degree of node i.
 - (iii) Generalise the degree-corrected SBM into a directed model. Write down the probability distribution of the edges to form the likelihood of the observations.