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Biclustering

Biclustering I

We have looked at G = (V ,E ) as an undirected network.

We shall now generalize this to having two types of nodes; V1 and
V2, respectively. There are edges between v1 ∈ V1 and v2 ∈ V2 given
by the edge set E .

Thus the intrinsic statistical object is (V1,V2,E ), with |V1| = n and
|V2| = m. We assume the data form has undirected edges.

The edges are collected in a data matrix X .

The common inference problem addressed in terms of the data matrix
is usually one of clustering.
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Biclustering

Biclustering II

Examples of biclustering applications include:

For online retail Xij can then show if user i wants product j , and our
task is to segment users and products into relevant subgroups. Who
might want product j ?

In bioinformativs, Xij could correspond to the log activation level of
gene j in patient i . Our task is then to determine groups of patients
with similar genetic profiles, while at the same time finding groups of
genes with similar activation levels.

In medicine determining groups in such data bases has helped to
identify associations between active ingredients and adverse medical
reactions.
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Biclustering

Biclustering III

Standard clustering can be applied either to rows or columns of a
symmetric matrix A. Unlike A,X is not symmetric.

Biclustering, clusters both these dimensions simultaneously.

Biclustering algorithms identify groups of variables that display similar
activity patterns under a specific subset of the common features.

We write Xij for the response of variable i under condition j .

We can represent this in two ways by its set of rows

R =
{
x
(r)
1 , . . . , x

(r)
n

}
and by its set of columns C =

{
x
(c)
1 , . . . , x

(c)
m

}
.

We will write X = (R,C ).

We will also write I ⊂ R and J ⊂ C .

We will write XIJ for the submatrix that has rows I and columns J.
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Biclustering

Biclustering IV

We define a cluster of rows as a subset of rows that exhibit similar
behaviour across the set of all columns.

A row cluster XIC = (I ,C ) is a subset of rows. Here I = {i1, . . . , ik}
is a subset of rows (I ⊂ R and k ≤ n).

A cluster of rows (I ,C ) can thus be defined as a k by m submatrix of
the matrix X .

A cluster of columns (in contrast) is a subset of columns that
exhibit similar behaviour across the set of all rows.

A column cluster XRJ = (R, J) is a subset of columns defined over
the set of all rows R, where J = {j1, . . . , js} is a subset of columns
(J ⊂ C and s ≤ m).

A cluster of columns (R, J) can then be defined as an n by s
submatrix of the matrix X .
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Biclustering

Biclustering V

In contrast a bicluster is a subset of rows that exhibit similar
behaviour across a subset of columns, and vice versa.

The bicluster XIJ is thus a subset of rows and a subset of columns
where I = {i1, . . . , ik} is a subset of rows (I ⊂ R and k ≤ n), and
J = {j1, . . . , js} is a subset of columns (J ⊂ C and s ≤ m).

A bicluster (I , J) can thus be defined as a k by s submatrix of the
matrix X .

Given a data matrix X we want to identify a set of biclusters
Bk = (Ik , Jk) so that Bk is in some sense homogeneous.

A data matrix can be viewed as a bipartite graph.

Recall, a graph G = (V ,E ), where V is the set of vertices and E is
the set of edges, is said to be bipartite if its vertices can be
partitioned into two sets L and U such that every edge in E has
exactly one end in L and the other element in U. Furthermore
V = L ∪ U.
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Biclustering

Biclustering VI

1. Biclusters with constant values.

2. Biclusters with constant values on rows or columns.

3. Biclusters with coherent values.

4. Biclusters with coherent evolutions.

The first three types here analyse the observed values in X ; the fourth
tries to identify coherent behaviour. To numerically summarize the data
matrix we define

X̄i ,J =
1

|J|
∑

j∈J
xij , X̄I ,j =

1

|I |
∑

i∈I
xij

X̄I ,J =
1

|I ||J|
∑

i∈I ,j∈J
xij .
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Biclustering

Biclustering VII Biclustering

Constant Biclusters

First we define a perfect constant bicluster as a submatrix (I , J),
where all values are equal, for all i 2 I and j 2 J:

xij = µ.

Sometimes such “ideal” biclusters can be found in some data
matrices.

The values Xij found in what can be considered a constant bicluster
are generally presented as ⌘ij + µ, where ⌘ij is the noise associated
with the real value of Xij .

Hartigan introduced block clustering to find these groups. This
algorithm splits the original data matrix into a set of submatrices
(biclusters) and uses the variance to evaluate the quality of each
bicluster (I , J):

Var{I , J} =
X

i2I , j2J

{xij � X̄I ,J}2. (1)
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Biclustering

Biclustering VIII
Biclustering

Constant Biclusters

To avoid continuous partitioning, Hartigan assumes that there are K
biclusters within the data matrix.

The algorithm stops when the data matrix is partitioned into K
biclusters and the quality of the resulting biclustering is computed:

Var{I , J}K =
KX

k=1

X

i2Ik , j2Jk

{xij � X̄Ik ,Jk
}2. (2)

Hartigan designed a permutation-based method to induce the optimal
number of biclusters, K .
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Biclustering

Biclustering IX

A perfect bicluster with constant columns is a submatrix (I , J), where
all the values within the bicluster can be obtained using one of the
following expressions:

E xij = µ+ αi (1)

E xij = µ× αi . (2)

Here µ is the typical value within the bicluster and αi is the
adjustment for row i ∈ I .
A perfect bicluster with constant rows is a submatrix (I , J), where all
the values within the bicluster can be obtained using one of the
following expressions:

E xij = µ+ βj (3)

E xij = µ× βj . (4)

Here µ is the typical value within the bicluster and βj is the
adjustment for column j ∈ J.
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Extensions of Exchangeability

We have noticed that permutation invariance is a natural probabilistic
symmetry for networks.

We can either consider finite exchangeability, or a finite sample from
an infinite exchangeable array.

Exchangeability has a number of drawback:

(a) Sparsity: The simplest (vertex) exchangeable
representation is not consistent with sparsity;
(b) Internal Heterogeneity: Neither are simple (vertex)
exchangeable models easily brought together with
“power-law degrees”
(c) External Heterogeneity: It is more challenging to
bring exchangeability together with covariates and other
information.

What alternatives are there?
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Extensions of Exchangeability

The graphon Aldous–Hoover framework used a function
f (x , y), [0, 1]2 7→ [0, 1] to parameterise the distrubtion of {Aij}i>j .

As an alternative a network can be constructed from a point process.

We define a point process Yt ⊂ [0, t]× [0, t].

We say Yt is exchangeable if its distribution is unchanged by applying
any measure preserving transformation.

We observe A where Aij is unity if (θi , θj) ∈ Y , where θ1, θ2, . . . are
the arrival times of vertices in the point process.

{Yt} being stationary does not mean X is exchangeable.

The occurence of (t, t ′) ∈ y means that there is an edge between
vertices labelled t and t ′.

It is tempting to interpret t as the time a vertex enters the system;
this is overinterpreting. But its connection to real data is easier to
make with this interpretation.
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Graphex

So then what? How do we get sparse and powerlaw?

A graphex is a triplet (I ,S ,W ). I ∈ [0,∞) (non-negative real
number), S : [0,∞) 7→ [0,∞) is a measurable map, and
W : [0,∞)2 7→ [0, 1]2, a graphon function.

We take realisations of a unit-rate point processes Ξ = {(θi , θj)},
Ξ′
i = {(σij , χij)} and Ξ′′ = {(ρj , ρ′j , ηj}j . θi , σij as potential vertex

labels, while can be regarded as types of the corresponding labels.

The point process determines the stochastic properties of θi .

We then realize a graph A by a suitable combination of the three
random arrays.

The most important edges are present with probability/conditional
expectation

Pr{W (θi , θj) ≤ ζij},
where {ζij} are iid uniform random variables. Additional edges are
present due to i) isolated ’stars’ and ii) isolated ‘edges’.
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Graphex

Limits of Sparse Exchangeable Graphs
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Figure 1: This figure illustrates how we can generate a graphon process (Gt)t�0 from a
graphon W = (W, S ), where S = (S, S, µ) is a �-finite measure space. The two
coordinate axes on the middle figure represent our feature space S, where the red
(resp. blue) dots on the axes represent vertices born during [0, s1] (resp. (s1, s2])
for 0 < s1 < s2, and the red (resp. blue) dots in the interior of the first quadrant
represent edges in Gt for t � s1 (resp. t � s2). The graph Gt is an induced
subgraph of a graph eGt with infinitely many vertices in the case µ(S) = 1, such
that Gt is obtained from eGt by removing isolated vertices. At time t � 0 the
marginal law of the features of V ( eGt) is a Poisson point process on S with intensity
tµ. Two distinct vertices with features x and x0, respectively, are connected to
each other by an undirected edge with probability W (x, x0). The coordinate axes
on the right figure represent time R+. We get the graph Gt by considering the
edges restricted to [0, t]2. Note that the coordinate axes in the right figure and
the graphs eGt in the left figure are slightly inaccurate if we assume µ(S) = 1,
since in this case there are infinitely many isolated vertices in eGt for each t > 0.
We have chosen to label the vertices by the order in which they appear in Gt,
where ties are resolved by considering the time the vertices were born, i.e., by
considering the time they appeared in eGt.

then connecting two points xi, xj in �t with probability W (xi, xj). As explained in the next

paragraph, this leads to a family of graphs ( eGt)t�0 such that the graphs eGt have almost
surely at most countably infinitely many vertices and (assuming appropriate integrability
conditions on W , e.g., W 2 L1) a finite number of edges. Removing all isolated vertices
from eGt, we obtain a family of graphs (Gt)t�0 that are almost surely finite. We refer to the

families ( eGt)t�0 and (Gt)t�0 as graphon processes; when it is necessary to distinguish the
two, we call them graphon processes with or without isolated vertices, respectively.

To interpret the graphon process (Gt)t�0 as a family of growing graphs we will need to
couple the graphs Gt for di↵erent times t � 0. To this end, we consider a Poisson point
process � on R+ ⇥ S (with R+ := [0,1) being equipped with the Borel �-algebra and
Lebesgue measure). Each point v = (t, x) of � corresponds to a vertex of an infinite graph
eG, where the coordinate t is interpreted as the time the vertex is born and the coordinate

3

From Borgs, Chayes, Cohn and Holden 2018.
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Edge Exchangeability

Edge Exchangeable RVs

OK, but what if we start to observe edges rather that nodes?

We assume we observe an edge list En = {Ei}i∈[n]. Also assume we
have permutations σ : [n] 7→ [n] and define Eσ

n = {Eσ(i)}i∈[n].
We write a random edge labeled network Y = {Yi}i∈N.
We then have the following definition:

Definition (Edge exchangeability)

A randomly edge labeled network Y = {Yi}i∈N is edge exchangeable if

Yσ L
= Y for all permutations σ : N → N.
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Edge Exchangeability

EDGE EXCHANGEABLE MODELS FOR NETWORK DATA 3

Figure 1. (a) A network structure derived from some physi-
cal process. Neither vertices nor edges come equipped with
labels. Labels are assigned exogenously during data analysis.
(b) Network data obtained from Panel (a) by labeling vertices.
(c) Network data obtained from Panel (a) by labeling edges.

7. We defer all proofs to Section 8, in which we also prove a de Finetti-type
characterization of the class of edge exchangeable network models.

2. Network data

Figure 1 depicts a network whose edges correspond to the outcome of
a process of interactions among individuals in a population P. Figure 1(a)
reflects that the real world process does not usually generate any vertex
or edge labels; rather, labels are assigned after data generation in order to
distinguish among statistical units and facilitate data analysis. The labeled
versions in Figures 1(b) and 1(c) show two possible ways to represent the
interactions in Figure 1(a) as a network with labeled vertices and edges,
respectively.

In the actors collaboration network [4, 29], P consists of all movie actors
and each movie corresponds to an interaction involving the set of individuals
in its cast. In the Enron network [18], edges correspond to emails exchanged
between Enron employees. In general there are more than two actors in
each movie, nothing precludes a set of actors from being cast together in
more than one movie, and actors sometimes play more than one role in the
same film; likewise, emails can involve more than two individuals, an email
exchange between the same group of people can occur repeatedly over time,
and a person may be listed multiple times in the recipient list of the same
email.

Both of these examples produce networks with multiple interactions
among the same set of individuals, interactions involving more than two
individuals, and multiple appearances of the same individual within the
same interaction. Analogous observations are possible for many other
network datasets, see Table 1, and so we allow network data to contain
edges with any finite multiset of vertices and multiple copies of the same
edge. We write fin(P) to denote the set of all finite multisets of P.

From Crane and Dempsey 2018 (JASA).
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Edge Exchangeability

Edge exchangeable models have the same probability assigned to all
edge labeled graphs that are equivalent up to a choice of relabeling.

Any edge labelled network Y = {Yi}i∈N yields a compatible sequence
of finite networks Y = {Yi}i∈N by taking Yn = Y|n to be the
restriction of subsampling [n] ⊂ N. Any such sequence is infinitely

edge exchangeable namely Yσ L
= Y for all permutation σ [n] → [n]

and Yn|[m]
L
= Ym for all n ≥ m ≥ 1.

Even if all edges arrive in an exchangeable process, the vertices arrive
in biased order weighted by the relative frequency of their occurrence
in the network interactions.

The sample of vertices, therefore, can be argued does not represent
an exchangeable draw from the population of vertices.
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