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@ We have looked at G = (V/, E) as an undirected network.

@ We shall now generalize this to having two types of nodes; V; and
V5, respectively. There are edges between v; € V4 and v» € V5 given
by the edge set E.

@ Thus the intrinsic statistical object is (Vi, Vo, E), with |V4| = n and
|Vo| = m. We assume the data form has undirected edges.

@ The edges are collected in a data matrix X.

@ The common inference problem addressed in terms of the data matrix
is usually one of clustering.
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@ Examples of biclustering applications include:

@ For online retail Xj; can then show if user / wants product j, and our
task is to segment users and products into relevant subgroups. Who
might want product j 7

@ In bioinformativs, Xj; could correspond to the log activation level of
gene j in patient /. Our task is then to determine groups of patients
with similar genetic profiles, while at the same time finding groups of
genes with similar activation levels.

@ In medicine determining groups in such data bases has helped to
identify associations between active ingredients and adverse medical
reactions.
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@ Standard clustering can be applied either to rows or columns of a
symmetric matrix A. Unlike A, X is not symmetric.

@ Biclustering, clusters both these dimensions simultaneously.

@ Biclustering algorithms identify groups of variables that display similar
activity patterns under a specific subset of the common features.

o We write Xj; for the response of variable i under condition ;.
@ We can represent this in two ways by its set of rows
R= {xfr), . ,x,(,r)} and by its set of columns C = {x{c), . ,x,(,f)}.
o We will write X = (R, C).
o We will also write I C R and J C C.

o We will write X); for the submatrix that has rows / and columns J.
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@ We define a cluster of rows as a subset of rows that exhibit similar
behaviour across the set of all columns.

@ A row cluster X;c = (I, C) is a subset of rows. Here | = {i1,...,ix}
is a subset of rows (/ C R and k < n).

@ A cluster of rows (/, C) can thus be defined as a k by m submatrix of
the matrix X.

@ A cluster of columns (in contrast) is a subset of columns that
exhibit similar behaviour across the set of all rows.

@ A column cluster Xgy = (R, J) is a subset of columns defined over
the set of all rows R, where J = {j1,...,Js} is a subset of columns
(JC Cands<m).

o A cluster of columns (R, J) can then be defined as an n by s
submatrix of the matrix X.
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@ In contrast a bicluster is a subset of rows that exhibit similar
behaviour across a subset of columns, and vice versa.

@ The bicluster Xj; is thus a subset of rows and a subset of columns
where | = {i,..., ik} is a subset of rows (/ C R and k < n), and
J={j1,...,Js} is a subset of columns (J C C and s < m).

o A bicluster (/,J) can thus be defined as a k by s submatrix of the
matrix X.

@ Given a data matrix X we want to identify a set of biclusters
By = (Ix, Jk) so that By is in some sense homogeneous.

@ A data matrix can be viewed as a bipartite graph.

@ Recall, a graph G = (V/, E), where V is the set of vertices and E is
the set of edges, is said to be bipartite if its vertices can be
partitioned into two sets L and U such that every edge in E has
exactly one end in L and the other element in U. Furthermore
V=LUU.
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Biclusters with constant values.

Biclusters with constant values on rows or columns.

w p o=

Biclusters with coherent values.
4. Biclusters with coherent evolutions.

The first three types here analyse the observed values in X; the fourth
tries to identify coherent behaviour. To numerically summarize the data
matrix we define

1
X1 = i r| Z i

ieljed
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o First we define a perfect constant bicluster as a submatrix (/, J),
where all values are equal, for all i € [ and j € J:

X,'j = W.

@ Sometimes such “ideal” biclusters can be found in some data
matrices.

@ The values Xj; found in what can be considered a constant bicluster
are generally presented as n;; + i, where 7;; is the noise associated
with the real value of Xj;.

@ Hartigan introduced block clustering to find these groups. This
algorithm splits the original data matrix into a set of submatrices
(biclusters) and uses the variance to evaluate the quality of each
bicluster (/, J):

Var{l, J} = Z {xi — X132 (1)

i€l jed

sofia.olhede@epfl.ch (EPFL) Statistical analysis of network data December 20, 2024 9/18



CP=-
Biclustering VIII I—PI L

@ To avoid continuous partitioning, Hartigan assumes that there are K
biclusters within the data matrix.

@ The algorithm stops when the data matrix is partitioned into K
biclusters and the quality of the resulting biclustering is computed:

K
Var{l, }k = > > {xj— X4 )2 (2)

k=1i€ly,jeJx

@ Hartigan designed a permutation-based method to induce the optimal
number of biclusters, K.
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@ A perfect bicluster with constant columns is a submatrix (/, J), where
all the values within the bicluster can be obtained using one of the
following expressions:

Exj = i+ a; (1)
EXU:MXCY,'. (2)

Here p is the typical value within the bicluster and «; is the
adjustment for row i € /.

@ A perfect bicluster with constant rows is a submatrix (/, J), where all
the values within the bicluster can be obtained using one of the
following expressions:

Exjj = p+ B; (3)
Exj = px 5. (4)
Here 41 is the typical value within the bicluster and j; is the

adjustment for column j € J.
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Extensions of Exchangeability

@ We have noticed that permutation invariance is a natural probabilistic
symmetry for networks.

@ We can either consider finite exchangeability, or a finite sample from
an infinite exchangeable array.

@ Exchangeability has a number of drawback:
(a) Sparsity: The simplest (vertex) exchangeable
representation is not consistent with sparsity;
(b) Internal Heterogeneity: Neither are simple (vertex)
exchangeable models easily brought together with
“power-law degrees”
(c) External Heterogeneity: It is more challenging to
bring exchangeability together with covariates and other
information.

@ What alternatives are there?
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Extensions of Exchangeability

@ The graphon Aldous—Hoover framework used a function
f(x,¥),[0,1]> = [0,1] to parameterise the distrubtion of {A;};~;.

@ As an alternative a network can be constructed from a point process.

@ We define a point process Y; C [0, t] x [0, t].

@ We say Y; is exchangeable if its distribution is unchanged by applying
any measure preserving transformation.

o We observe A where Aj; is unity if (6;,6;) € Y, where 1,6, ... are
the arrival times of vertices in the point process.

@ {Y;} being stationary does not mean X is exchangeable.

@ The occurence of (t,t') € y means that there is an edge between
vertices labelled t and t'.

o It is tempting to interpret t as the time a vertex enters the system;
this is overinterpreting. But its connection to real data is easier to
make with this interpretation.
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So then what? How do we get sparse and powerlaw?

A graphex is a triplet (/,S, W). | € [0,00) (non-negative real
number), S : [0,00) — [0, 00) is a measurable map, and

W : [0,00)? ~ [0,1]?, a graphon function.

We take realisations of a unit-rate point processes = = {(0;,6;)},
=i = {(oy, xi)} and =" = {(p;. p}, m;}j- 0i, o as potential vertex
labels, while can be regarded as types of the corresponding labels.
The point process determines the stochastic properties of ;.

We then realize a graph A by a suitable combination of the three
random arrays.

The most important edges are present with probability /conditional

expectation
Pr{W(0;,0;) < (i},

where {(j;} are iid uniform random variables. Additional edges are
present due to i) isolated 'stars’ and ii) isolated ‘edges’.
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Edges by feature

Edges by time
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From Borgs, Chayes, Cohn and Holden 2018.
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o OK, but what if we start to observe edges rather that nodes?

@ We assume we observe an edge list £, = {E;}ic[n- Also assume we
have permutations o : [n] + [n] and define ES = {E,(iy}ie[n]-
o We write a random edge labeled network Y = {Y}en.

@ We then have the following definition:

Definition (Edge exchangeability)
A randomly edge labeled network ) = {Y;}ien is edge exchangeable if
%4 £ Y for all permutations o : N — N.
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Edge Exchangeability

(a) (b) (c)

From Crane and Dempsey 2018 (JASA).

sofia.olhede@epfl.ch (EPFL) Statistical analysis of network data December 20, 2024 17 /18



Edge Exchangeability

o Edge exchangeable models have the same probability assigned to all
edge labeled graphs that are equivalent up to a choice of relabeling.

@ Any edge labelled network ) = {);}ien yields a compatible sequence
of finite networks Y = {Y;}ien by taking V, = V|, to be the
restriction of subsampling [n] C N. Any such sequence is infinitely
edge exchangeable namely )7 £ Y for all permutation o [n] — [n]
and Vnl[m] £ Y, foralln>m>1.

o Even if all edges arrive in an exchangeable process, the vertices arrive
in biased order weighted by the relative frequency of their occurrence
in the network interactions.

@ The sample of vertices, therefore, can be argued does not represent
an exchangeable draw from the population of vertices.
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