Statistical analysis of network data lecture 13

Sofia Olhede

December 20, 2024

- Biclustering
- Extensions of Exchangeability
- Graphex
- Edge Exchangeability

Biclustering I

- We have looked at G = (V, E) as an undirected network.
- We shall now generalize this to having two types of nodes; V_1 and V_2 , respectively. There are edges between $v_1 \in V_1$ and $v_2 \in V_2$ given by the edge set E.
- Thus the intrinsic statistical object is (V_1, V_2, E) , with $|V_1| = n$ and $|V_2| = m$. We assume the data form has **undirected** edges.
- The edges are collected in a data matrix X.
- The common inference problem addressed in terms of the data matrix is usually one of clustering.

Biclustering II

- Examples of biclustering applications include:
- For online retail X_{ij} can then show if user i wants product j, and our task is to segment users and products into relevant subgroups. Who might want product j?
- In bioinformativs, X_{ij} could correspond to the log activation level of gene j in patient i. Our task is then to determine groups of patients with similar genetic profiles, while at the same time finding groups of genes with similar activation levels.
- In medicine determining groups in such data bases has helped to identify associations between active ingredients and adverse medical reactions.

Biclustering III

- Standard clustering can be applied either to rows or columns of a symmetric matrix A. Unlike A, X is not symmetric.
- Biclustering, clusters both these dimensions simultaneously.
- Biclustering algorithms identify groups of variables that display similar activity patterns under a specific subset of the common features.
- We write X_{ij} for the response of variable i under condition j.
- We can represent this in two ways by its set of rows $R = \left\{x_1^{(r)}, \dots, x_n^{(r)}\right\}$ and by its set of columns $C = \left\{x_1^{(c)}, \dots, x_m^{(c)}\right\}$.
- We will write X = (R, C).
- We will also write $I \subset R$ and $J \subset C$.
- We will write X_{IJ} for the submatrix that has rows I and columns J.

Biclustering IV

- We define a **cluster of rows** as a subset of rows that exhibit similar behaviour across the set of all columns.
- A row cluster $X_{IC} = (I, C)$ is a subset of rows. Here $I = \{i_1, \dots, i_k\}$ is a subset of rows $(I \subset R \text{ and } k \leq n)$.
- A cluster of rows (I, C) can thus be defined as a k by m submatrix of the matrix X.
- A cluster of columns (in contrast) is a subset of columns that exhibit similar behaviour across the set of all rows.
- A column cluster $X_{RJ}=(R,J)$ is a subset of columns defined over the set of all rows R, where $J=\{j_1,\ldots,j_s\}$ is a subset of columns $(J\subset C \text{ and } s\leq m)$.
- A cluster of columns (R, J) can then be defined as an n by s submatrix of the matrix X.

Biclustering V

- In contrast a bicluster is a subset of rows that exhibit similar behaviour across a subset of columns, and vice versa.
- The bicluster X_{IJ} is thus a subset of rows and a subset of columns where $I = \{i_1, \ldots, i_k\}$ is a subset of rows $(I \subset R \text{ and } k \leq n)$, and $J = \{j_1, \ldots, j_s\}$ is a subset of columns $(J \subset C \text{ and } s \leq m)$.
- A bicluster (I, J) can thus be defined as a k by s submatrix of the matrix X.
- Given a data matrix X we want to identify a set of biclusters $B_k = (I_k, J_k)$ so that B_k is in some sense homogeneous.
- A data matrix can be viewed as a bipartite graph.
- Recall, a graph G = (V, E), where V is the set of vertices and E is the set of edges, is said to be **bipartite** if its vertices can be partitioned into two sets L and U such that every edge in E has exactly one end in L and the other element in U. Furthermore $V = I \cup U$.

Biclustering VI

- Biclusters with constant values.
- 2. Biclusters with constant values on rows or columns.
- Biclusters with coherent values.
- Biclusters with coherent evolutions.

The first three types here analyse the observed values in X; the fourth tries to identify coherent behaviour. To numerically summarize the data matrix we define

$$\begin{split} \bar{X}_{i,J} &= \frac{1}{|J|} \sum_{j \in J} x_{ij}, \quad \bar{X}_{I,j} &= \frac{1}{|I|} \sum_{i \in I} x_{ij} \\ \bar{X}_{I,J} &= \frac{1}{|I||J|} \sum_{i \in I, i \in J} x_{ij}. \end{split}$$

Biclustering VII

• First we define a perfect constant bicluster as a submatrix (I, J), where all values are equal, for all $i \in I$ and $j \in J$:

$$x_{ij} = \mu$$
.

- Sometimes such "ideal" biclusters can be found in some data matrices.
- The values X_{ij} found in what can be considered a constant bicluster are generally presented as $\eta_{ij} + \mu$, where η_{ij} is the noise associated with the real value of X_{ij} .
- Hartigan introduced block clustering to find these groups. This
 algorithm splits the original data matrix into a set of submatrices
 (biclusters) and uses the variance to evaluate the quality of each
 bicluster (1, J):

$$Var\{I, J\} = \sum_{i \in I, j \in J} \{x_{ij} - \bar{X}_{I, J}\}^2.$$
 (1)

Biclustering VIII

- To avoid continuous partitioning, Hartigan assumes that there are K biclusters within the data matrix.
- The algorithm stops when the data matrix is partitioned into K biclusters and the quality of the resulting biclustering is computed:

$$Var\{I, J\}_{K} = \sum_{k=1}^{K} \sum_{i \in I_{k}, j \in J_{k}} \{x_{ij} - \bar{X}_{I_{k}, J_{k}}\}^{2}.$$
 (2)

 Hartigan designed a permutation-based method to induce the optimal number of biclusters, K.

Biclustering IX

 A perfect bicluster with constant columns is a submatrix (1, J), where all the values within the bicluster can be obtained using one of the following expressions:

$$\mathbb{E}\,\mathsf{x}_{ij} = \mu + \alpha_i\tag{1}$$

$$\mathbb{E} x_{ij} = \mu \times \alpha_i. \tag{2}$$

Here μ is the typical value within the bicluster and α_i is the adjustment for row $i \in I$.

 A <u>perfect bicluster</u> with constant rows is a submatrix (*I*, *J*), where all the values within the bicluster can be obtained using one of the following expressions:

$$\mathbb{E}\,\mathsf{x}_{ij} = \mu + \beta_j\tag{3}$$

$$\mathbb{E} x_{ij} = \mu \times \beta_j. \tag{4}$$

Here μ is the typical value within the bicluster and β_j is the adjustment for column $j \in J$.

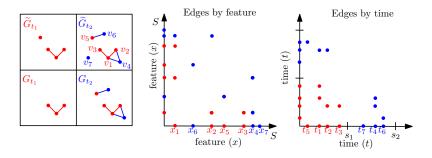
- We have noticed that permutation invariance is a natural probabilistic symmetry for networks.
- We can either consider finite exchangeability, or a finite sample from an infinite exchangeable array.
- Exchangeability has a number of drawback:
 - (a) Sparsity: The simplest (vertex) exchangeable representation is not consistent with sparsity;
 - (b) Internal Heterogeneity: Neither are simple (vertex) exchangeable models easily brought together with "power-law degrees"
 - (c) External Heterogeneity: It is more challenging to bring exchangeability together with covariates and other information.
- What alternatives are there?

- The graphon Aldous–Hoover framework used a function $f(x,y), [0,1]^2 \mapsto [0,1]$ to parameterise the distrubtion of $\{A_{ij}\}_{i>j}$.
- As an alternative a network can be constructed from a point process.
- We define a point process $Y_t \subset [0, t] \times [0, t]$.
- We say Y_t is exchangeable if its distribution is unchanged by applying any measure preserving transformation.
- We observe A where A_{ij} is unity if $(\theta_i, \theta_j) \in Y$, where $\theta_1, \theta_2, \ldots$ are the arrival times of vertices in the point process.
- $\{Y_t\}$ being stationary does not mean X is exchangeable.
- The occurrence of $(t, t') \in y$ means that there is an edge between vertices labelled t and t'.
- It is tempting to interpret *t* as the time a vertex enters the system; this is overinterpreting. But its connection to real data is easier to make with this interpretation.

- So then what? How do we get sparse and powerlaw?
- A graphex is a triplet (I, S, W). $I \in [0, \infty)$ (non-negative real number), $S : [0, \infty) \mapsto [0, \infty)$ is a measurable map, and $W : [0, \infty)^2 \mapsto [0, 1]^2$, a graphon function.
- We take realisations of a unit-rate point processes $\Xi = \{(\theta_i, \theta_j)\}$, $\Xi_i' = \{(\sigma_{ij}, \chi_{ij})\}$ and $\Xi'' = \{(\rho_j, \rho_j', \eta_j\}_j, \theta_i, \sigma_{ij} \text{ as potential vertex labels, while can be regarded as types of the corresponding labels.$
- The point process determines the stochastic properties of θ_i .
- We then realize a graph A by a suitable combination of the three random arrays.
- The most important edges are present with probability/conditional expectation

$$\Pr\{W(\theta_i, \theta_i) \leq \zeta_{ij}\},\$$

where $\{\zeta_{ij}\}$ are iid uniform random variables. Additional edges are present due to i) isolated 'stars' and ii) isolated 'edges'.



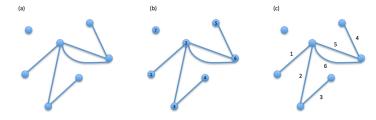
From Borgs, Chayes, Cohn and Holden 2018.

Edge Exchangeable RVs

- OK, but what if we start to observe edges rather that nodes?
- We assume we observe an edge list $E_n = \{E_i\}_{i \in [n]}$. Also assume we have permutations $\sigma : [n] \mapsto [n]$ and define $E_n^{\sigma} = \{E_{\sigma(i)}\}_{i \in [n]}$.
- We write a random edge labeled network $Y = \{Y_i\}_{i \in \mathbb{N}}$.
- We then have the following definition:

Definition (Edge exchangeability)

A randomly edge labeled network $\mathcal{Y} = \{\mathcal{Y}_i\}_{i \in \mathbb{N}}$ is edge exchangeable if $\mathcal{Y}^{\sigma} \stackrel{\mathcal{L}}{=} \mathcal{Y}$ for all permutations $\sigma : \mathbb{N} \to \mathbb{N}$.



From Crane and Dempsey 2018 (JASA).

- Edge exchangeable models have the same probability assigned to all edge labeled graphs that are equivalent up to a choice of relabeling.
- Any edge labelled network $\mathcal{Y} = \{\mathcal{Y}_i\}_{i \in \mathbb{N}}$ yields a compatible sequence of finite networks $\mathcal{Y} = \{\mathcal{Y}_i\}_{i \in \mathbb{N}}$ by taking $\mathcal{Y}_n = \mathcal{Y}|_n$ to be the restriction of subsampling $[n] \subset \mathbb{N}$. Any such sequence is infinitely edge exchangeable namely $\mathcal{Y}^{\sigma} \stackrel{\mathcal{L}}{=} \mathcal{Y}$ for all permutation σ $[n] \to [n]$ and $\mathcal{Y}_n|_{[m]} \stackrel{\mathcal{L}}{=} \mathcal{Y}_m$ for all $n \geq m \geq 1$.
- Even if all edges arrive in an exchangeable process, the vertices arrive in biased order weighted by the relative frequency of their occurrence in the network interactions.
- The sample of vertices, therefore, can be argued does not represent an exchangeable draw from the population of vertices.