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@ Let G = (V, E) be an undirected network.

@ Assume that all vertices v € V are known.

o We let V(@ be the set of distinct unordered edges.

o Note that the union of (i) the set E of edges in G, and (ii) the set
V@\E of non-edges.

@ In this section we will suppose the presence or absence of an edge in
V(@) is only observed for v

obs *

e For Vrfqzizs = V(z)\VCfES) the information about edges is missing.
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@ Let A be a random n x n matrix with binary entries.

e We denote by A°® and A™* the adjacency matrices corresponding
to V) and v
@ The problem of link prediction is to predict A™* given

A°bs = a°bs a5 well as possible vertex attributes X = x € R".

@ A number of authors have proposed solutions, e.g. Liben-Nowell &
Kleinberg (2003), Popescu & Ungar (2003) etc.

@ Sometimes the "missingness’ corresponds to a temporal component.
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Picture from Kolaczyk 2010.
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@ Often missingness is due to sampling. Then we must model the
sampling mechanism.

@ Often it is assumed that edge variables are missing at random (e.g.
Hoff (2007)).

@ The at random assumption corresponds to that the condition of
whether A;; is observed depends only on whether other A;/;/ are
observed not on the variable Aj; itself.

o If it were the case that the probability that A;; was missing depended
on the value of A;; then this is called informative missingness.

@ Given a suitable model for X and (Amiss , Aobs ) we might seek
PI’{AmiSS ‘ Aobs — aobs ,X — X}.
@ Often researchers seek AB-“SS separately for computational tractability.
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@ Can the change in a social network be modelled using features
intrinsic to the network itself?

o If we think the network is evolving then we are predicting the
formation of links.

@ This can be model-based, say using preferential attachment or other
evolutionary models.
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@ For each pair i and j whose edge status is not known (for each
{i,j} € Vn(qzlzs) a score value s(i, ) is computed.

@ Normally a set of predicted edges are found by setting a threshold
s* > 0 and then keeping the edges for which s(i,j) > s*.

@ A number of scores have been proposed.

@ Scores are generally chosen to determine certain structural
characteristics of a network graph G(©b) = (V/(obs) E(obs))
associated with A°Ps = g°bs

@ A simple choice would be

S(I,J) —_ — disth:bs(u7 V).

@ The negative sign in this equation is included so that larger values
indicate that vertices have increased probability of sharing an edge.
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@ Also, there are also a number of scores based on the 1
-neighbourhood of node i; N(i,1). We also define N(°")(j, 1)

@ The so-called neighbourhood score is

s(i,j) = [NCP(i, 1) N NEP(G 1)),
@ This assumes that in the missing data edges are more likely if

observed edges exist between the nodes.

@ As n grows in size this would naturally grow and so a normalized
version is the Jaccard coefficient (see also our metrics lecture):

’N(obs ) N N(obs)(j 1)’
‘N(obs ) U N(obs)(J 1)‘
@ This also relies on the observed and missing data having the same

characteristics.
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@ A score relating to the Jaccard coeficient is the Liben—Nowell score

Z 1

S(’v./) = .
(obs)

ke N(©bs)(j,1)NN(ebs)(j,1) |og| N (k7 1)|

@ This score weights heavily the common neighbours of i and j that are
not themselves highly connected.
@ A problem with those scores is that they are heavily local.

@ The implicit assumption to this choice is that vertices in the observed
graph are tied implies that they should be linked also in the missing
data.
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@ Link prediction can be approached as binary classification.
o We take A% = a°%* 3s training data.

@ Our goal is to use the data a®®* and any vertex attributes X to
construct a classifier.

@ Then we use the classifier to predict entries in A™sS .

o We attempt to "approximate” the rule that determines the presence
of edges.
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@ We shall explain what we chose as z momentarily.

@ Our models will be of the form:

Pg(A;j=0]Z;=12)

@ here Zj; is a vector of explanatory variables indexed by the pair {/, }.

o Estimates of 3 can be produced using maximum likelihood.
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@ Potential edges ij are classified as present or absent according to
estimated classification probabilities:

( . ) exp <BTZ>

Py(ATS =12 =2) = ———F—F—,
puy 1+exp (BTZ>

and if this quantity exceeds a threshold 0.5 the edge is deemed

present.
@ The Z;; are here vectors of functions

obs obs T
Z; = (&1 (A X).. ax (A7), X))
where A°ES;..) is all elements of A°"* barring Ajj.
@ We only use Aj; to train our classifier.
@ The functions gi1(-) up to gk (-) are selected to parameterize
predictive information in A°PS = a°Ps and X = x.
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e Standard logistic regression framework would have Aj; as independent.
@ We do not know the effect on classifier accuracy dependence has.
@ The underlying missingness mechanism should affect the answer.

@ We shall think about logistic regression with latent variables.
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@ Let M we an unknown random symmetric n x n matrix of the form
M=UTAU +E.
In this representation U = (uy,...,u,) is a random but orthogonal

matrix, A is a n X n random diagonal matrix, and E = (e,-j) is a
matrix of iid noise variables.

o To preserve symmetry we take €;; = ¢j;.

@ The matrix M conditionally takes the form:

M; | U, A E = u] Au; + ¢;.
@ We augment Z;; by the unobserved variable M;; so we get
o {Pﬁ(Aij: 11Zj=2,M; = m)} T2 m,
e With this model, if we are only given Z;; then {A;;} are dependent.
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@ The dependence is a consequence of the hierarchical nature of our
model.

@ We introduced M to capture effects that are not captured by Z;;.

@ To produce statistical predictions we need to specify distributions for
U,A and E.

@ For a Bayesian analysis, priors for 3 need to be specified.

@ To determine if there are edges we use elements in A™%* we compute

E exp{,BTZ,-j + I\/I,-J-}
1+ exp{,@TZ,-j + MU}

obs obs
|A —a ,Z,'jZZ),

and compare this value to a given threshold.
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@ We have looked at G = (V/, E) as an undirected network.

@ We shall now generalize this to having two types of nodes; V4 and
V5, respectively. There are edges between v; € V4 and v» € V5 given
by the edge set E.

@ Thus the intrinsic statistical object is (Vi, Vo, E), with |V4| = n and
|Vo| = m. We assume the data form has undirected edges.

@ The edges are collected in a data matrix X.

@ The common inference problem addressed in terms of the data matrix
is usually one of clustering.
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@ Examples of biclustering applications include:

@ For online retail Xj; can then show if user / wants product j, and our
task is to segment users and products into relevant subgroups. Who
might want product j 7

@ In bioinformativs, Xj; could correspond to the log activation level of
gene j in patient /. Our task is then to determine groups of patients
with similar genetic profiles, while at the same time finding groups of
genes with similar activation levels.

@ In medicine determining groups in such data bases has helped to
identify associations between active ingredients and adverse medical
reactions.
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@ Standard clustering can be applied either to rows or columns of a
symmetric matrix A. Unlike A, X is not symmetric.

@ Biclustering, clusters both these dimensions simultaneously.

@ Biclustering algorithms identify groups of variables that display similar
activity patterns under a specific subset of the common features.

o We write Xj; for the response of variable i under condition ;.
@ We can represent this in two ways by its set of rows
R= {xfr), . ,x,(,r)} and by its set of columns C = {x{c), . ,x,(,f)}.
o We will write X = (R, C).
o We will also write I C R and J C C.

o We will write X); for the submatrix that has rows / and columns J.
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@ We define a cluster of rows as a subset of rows that exhibit similar
behaviour across the set of all columns.

@ A row cluster X;c = (I, C) is a subset of rows. Here | = {i1,...,ix}
is a subset of rows (/ C R and k < n).

@ A cluster of rows (/, C) can thus be defined as a k by m submatrix of
the matrix X.

@ A cluster of columns (in contrast) is a subset of columns that
exhibit similar behaviour across the set of all rows.

@ A column cluster Xgy = (R, J) is a subset of columns defined over
the set of all rows R, where J = {j1,...,Js} is a subset of columns
(JC Cands<m).

o A cluster of columns (R, J) can then be defined as an n by s
submatrix of the matrix X.

sofia.olhede@epfl.ch (EPFL) Statistical analysis of network data December 4, 2024 20/21



Biclustering V

I

PrL

@ In contrast a bicluster is a subset of rows that exhibit similar
behaviour across a subset of columns, and vice versa.

@ The bicluster Xj; is thus a subset of rows and a subset of columns
where | = {i,..., ik} is a subset of rows (/ C R and k < n), and
J={j1,...,Js} is a subset of columns (J C C and s < m).

o A bicluster (/,J) can thus be defined as a k by s submatrix of the
matrix X.

@ Given a data matrix X we want to identify a set of biclusters
By = (Ix, Jk) so that By is in some sense homogeneous.

@ A data matrix can be viewed as a bipartite graph.

@ Recall, a graph G = (V/, E), where V is the set of vertices and E is
the set of edges, is said to be bipartite if its vertices can be
partitioned into two sets L and U such that every edge in E has
exactly one end in L and the other element in U. Furthermore
V=LUU.
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