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Link Prediction

Link Prediction I

Let G = (V ,E ) be an undirected network.

Assume that all vertices v ∈ V are known.

We let V (2) be the set of distinct unordered edges.

Note that the union of (i) the set E of edges in G , and (ii) the set
V (2)\E of non-edges.

In this section we will suppose the presence or absence of an edge in

V (2) is only observed for V
(2)
obs .

For V
(2)
miss = V (2)\V (2)

obs the information about edges is missing.
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Link Prediction

Link Prediction II

Let A be a random n × n matrix with binary entries.

We denote by Aobs and Amiss the adjacency matrices corresponding

to V
(2)
miss and V

(2)
obs .

The problem of link prediction is to predict Amiss given
Aobs = aobs as well as possible vertex attributes X = x ∈ Rn.

A number of authors have proposed solutions, e.g. Liben-Nowell &
Kleinberg (2003), Popescu & Ungar (2003) etc.

Sometimes the ”missingness” corresponds to a temporal component.
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Link Prediction

Link Prediction III
Missing edges

Picture from Kolaczyk 2010.
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Link Prediction

Link Prediction IV

Often missingness is due to sampling. Then we must model the
sampling mechanism.

Often it is assumed that edge variables are missing at random (e.g.
Hoff (2007)).

The at random assumption corresponds to that the condition of
whether Aij is observed depends only on whether other Ai ′j ′ are
observed not on the variable Aij itself.

If it were the case that the probability that Aij was missing depended
on the value of Aij then this is called informative missingness.

Given a suitable model for X and
(
Amiss ,Aobs

)
we might seek

Pr
{
Amiss | Aobs = aobs ,X = x

}
.

Often researchers seek Amiss
ij separately for computational tractability.
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Link Prediction

Link Prediction V

Can the change in a social network be modelled using features
intrinsic to the network itself?

If we think the network is evolving then we are predicting the
formation of links.

This can be model-based, say using preferential attachment or other
evolutionary models.
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Scoring methods

Scoring Methods I

For each pair i and j whose edge status is not known (for each

{i , j} ∈ V
(2)
miss

)
a score value s(i , j) is computed.

Normally a set of predicted edges are found by setting a threshold
s∗ > 0 and then keeping the edges for which s(i , j) > s∗.

A number of scores have been proposed.

Scores are generally chosen to determine certain structural
characteristics of a network graph G (obs) =

(
V (obs),E (obs)

)
associated with Aobs = aobs .

A simple choice would be

s(i , j) = − distGobs(u, v).

The negative sign in this equation is included so that larger values
indicate that vertices have increased probability of sharing an edge.
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Scoring methods

Scoring Methods II

Also, there are also a number of scores based on the 1
-neighbourhood of node i ;N(i , 1). We also define N(obs)(i , 1)

The so-called neighbourhood score is

s(i , j) =
∣∣∣N(obs)(i , 1) ∩ N(obs)(j , 1)

∣∣∣.
This assumes that in the missing data edges are more likely if
observed edges exist between the nodes.

As n grows in size this would naturally grow and so a normalized
version is the Jaccard coefficient (see also our metrics lecture):

s(i , j) =

∣∣N(obs)(i , 1) ∩ N(obs)(j , 1)
∣∣∣∣N(obs)(i , 1) ∪ N(obs)(j , 1)
∣∣ .

This also relies on the observed and missing data having the same
characteristics.
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Scoring methods

Scoring Methods III

A score relating to the Jaccard coeficient is the Liben–Nowell score

s(i , j) =
∑

k∈N(obs)(i ,1)∩N(obs)(j ,1)

1

log
∣∣N(obs)(k, 1)

∣∣ .
This score weights heavily the common neighbours of i and j that are
not themselves highly connected.

A problem with those scores is that they are heavily local.

The implicit assumption to this choice is that vertices in the observed
graph are tied implies that they should be linked also in the missing
data.
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Scoring methods

Scoring Methods IV

Link prediction can be approached as binary classification.

We take Aobs = aobs as training data.

Our goal is to use the data aobs and any vertex attributes X to
construct a classifier.

Then we use the classifier to predict entries in Amiss .

We attempt to ”approximate” the rule that determines the presence
of edges.
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Scoring methods

Logistic Regression I

We shall explain what we chose as z momentarily.

Our models will be of the form:

log

{
Pβ(Aij = 1 | Zij = z)

Pβ(Aij = 0 | Zij = z)

}
= βTz,

here Zij is a vector of explanatory variables indexed by the pair {i , j}.
Estimates of β can be produced using maximum likelihood.
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Scoring methods

Logistic Regression II

Potential edges ij are classified as present or absent according to
estimated classification probabilities:

Pβ̂

(
Amiss
ij = 1 | Zij = z

)
=

exp
(
β̂Tz

)
1 + exp

(
β̂Tz

) ,
and if this quantity exceeds a threshold 0.5 the edge is deemed
present.
The Zij are here vectors of functions

Zij =
(
g1
(
Aobs

(−ij),X
)
, . . . gK

(
Aobs

(−ij),X
))T

,

where Aobs
(−ij) is all elements of Aobs barring Aij .

We only use Aij to train our classifier.
The functions g1(·) up to gK (·) are selected to parameterize
predictive information in Aobs = aobs and X = x.
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Scoring methods

Logistic Regression III

Standard logistic regression framework would have Aij as independent.

We do not know the effect on classifier accuracy dependence has.

The underlying missingness mechanism should affect the answer.

We shall think about logistic regression with latent variables.
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Scoring methods

Logistic Regression IV

Let M we an unknown random symmetric n × n matrix of the form

M = UTΛU+ E.

In this representation U = (u1, . . . ,un) is a random but orthogonal
matrix, Λ is a n × n random diagonal matrix, and E = (ϵij) is a
matrix of iid noise variables.

To preserve symmetry we take ϵij = ϵjj .

The matrix M conditionally takes the form:

Mij | U,Λ,E = uTi Λuj + ϵij .

We augment Zij by the unobserved variable Mij so we get

log

{
Pβ(Aij = 1 | Zij = z,Mij = m)

Pβ(Aij = 0 | Zij = z,Mij = m)

}
= βTz+m.

With this model, if we are only given Zij then {Aij} are dependent.
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Scoring methods

Logistic Regression V

The dependence is a consequence of the hierarchical nature of our
model.

We introduced M to capture effects that are not captured by Zij .

To produce statistical predictions we need to specify distributions for
U,Λ and E.

For a Bayesian analysis, priors for β need to be specified.

To determine if there are edges we use elements in Amiss we compute

E

(
exp
{
βTZij +Mij

}
1 + exp{βTZij +Mij}

| Aobs = aobs,Zij = z

)
,

and compare this value to a given threshold.
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Biclustering

Biclustering I

We have looked at G = (V ,E ) as an undirected network.

We shall now generalize this to having two types of nodes; V1 and
V2, respectively. There are edges between v1 ∈ V1 and v2 ∈ V2 given
by the edge set E .

Thus the intrinsic statistical object is (V1,V2,E ), with |V1| = n and
|V2| = m. We assume the data form has undirected edges.

The edges are collected in a data matrix X .

The common inference problem addressed in terms of the data matrix
is usually one of clustering.
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Biclustering

Biclustering II

Examples of biclustering applications include:

For online retail Xij can then show if user i wants product j , and our
task is to segment users and products into relevant subgroups. Who
might want product j ?

In bioinformativs, Xij could correspond to the log activation level of
gene j in patient i . Our task is then to determine groups of patients
with similar genetic profiles, while at the same time finding groups of
genes with similar activation levels.

In medicine determining groups in such data bases has helped to
identify associations between active ingredients and adverse medical
reactions.
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Biclustering

Biclustering III

Standard clustering can be applied either to rows or columns of a
symmetric matrix A. Unlike A,X is not symmetric.

Biclustering, clusters both these dimensions simultaneously.

Biclustering algorithms identify groups of variables that display similar
activity patterns under a specific subset of the common features.

We write Xij for the response of variable i under condition j .

We can represent this in two ways by its set of rows

R =
{
x
(r)
1 , . . . , x

(r)
n

}
and by its set of columns C =

{
x
(c)
1 , . . . , x

(c)
m

}
.

We will write X = (R,C ).

We will also write I ⊂ R and J ⊂ C .

We will write XIJ for the submatrix that has rows I and columns J.
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Biclustering

Biclustering IV

We define a cluster of rows as a subset of rows that exhibit similar
behaviour across the set of all columns.

A row cluster XIC = (I ,C ) is a subset of rows. Here I = {i1, . . . , ik}
is a subset of rows (I ⊂ R and k ≤ n).

A cluster of rows (I ,C ) can thus be defined as a k by m submatrix of
the matrix X .

A cluster of columns (in contrast) is a subset of columns that
exhibit similar behaviour across the set of all rows.

A column cluster XRJ = (R, J) is a subset of columns defined over
the set of all rows R, where J = {j1, . . . , js} is a subset of columns
(J ⊂ C and s ≤ m).

A cluster of columns (R, J) can then be defined as an n by s
submatrix of the matrix X .
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Biclustering

Biclustering V

In contrast a bicluster is a subset of rows that exhibit similar
behaviour across a subset of columns, and vice versa.

The bicluster XIJ is thus a subset of rows and a subset of columns
where I = {i1, . . . , ik} is a subset of rows (I ⊂ R and k ≤ n), and
J = {j1, . . . , js} is a subset of columns (J ⊂ C and s ≤ m).

A bicluster (I , J) can thus be defined as a k by s submatrix of the
matrix X .

Given a data matrix X we want to identify a set of biclusters
Bk = (Ik , Jk) so that Bk is in some sense homogeneous.

A data matrix can be viewed as a bipartite graph.

Recall, a graph G = (V ,E ), where V is the set of vertices and E is
the set of edges, is said to be bipartite if its vertices can be
partitioned into two sets L and U such that every edge in E has
exactly one end in L and the other element in U. Furthermore
V = L ∪ U.
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