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Thomas Mountford Fall 2022
Series 9: convergence in distribution Solutions
Exercise 1

Given x € R, we will write x* = max{x, 0}, x~ = (-x)*. Fix n € N; we have

1= f FulX)dx + f FulX)dx = f Fu0dx + f F0dx,
[fu<feol [fu> fool [fn<feol [fu> fool

f foo(X)dx — f fu(x)dx = f fu(x)dx — f foo(x)dx,
[fn<feol [fu<feol [fo>feo] [fa>feol

f (o — fo)* (0)dx = f (o = fo)" (00,
R R

SO

that is to say,

since
X € [fn < foo]c S (foo - fn)(x)+ = 03
X € [fn > fw]c Sl (fn - foo)(x)+ =0.

Let us write F,, 1 < n < oo for the respective c.d.f. of X,,, 1 < n < co. Notice that, for every x € R,

P = Fi = [ ey - IREZE [ 1509 = v

- fR o = i) 0)dy + fR o= o) 0)dy = 2 fR (oo — £)* 0.

We have 0 < (foo — fu)*(¥) < fo(») and, by hypothesis, (foo — fu,)*(¥) = 0 as n — co. Hence, by the
dominated convergence theorem we have fR( Joo = f)TMdy — 0, 50 |Foo(x) — Fy(x)] — 0, and since x is
arbitrary, we are done.

An alternative way to show that

fR /o) = fuO)dy

tends to O as n tends to infinity is to use Scheffé’s theorem, see exercise 6 of series 3 (actually, the
reasoning above contains a proof of Scheffé’s theorem).

Exercise 2

Fix € > 0. Choose M such that F(-M) < €,1 — F(M) < €. Since F is uniformly continuous on the
compact set [—-M, M], there exists 6 > 0 such that —-M < x,y < M, |x—y| < 6 = |F(x) - F(y)| < . Now
take a sequence xg, X1, ..., X; such that xo = —M, x; = M and for all ;,0 < x;;; — x; < ¢. Finally, choose
N suchthatn > N = |F(x;) — Fn(x;)| < € for all i. Fix n > N, x € R. We separately consider the cases:

e x < —M. We then have F,(x) < F,(-M) < F(-M) + € < 2¢ and F(x) < F(-M) < €, so
F,(x), F(x) € [0, 2€] and thus |F,(x) — F(x)| < 2e.

e x> M. Similarly, we have F,(x), F(x) € [1 — 2¢, 1] and thus |F,,(x) — F(x)| < 2e.
e x € [-M, M]. Choose i such that x € [x;, x;+1]. Notice that
F(x;) — € < Fu(xi) < Fp(x) < Fu(xiz1) < F(xiv1) + € < F(x;) + 2¢€;
F(x;)) < F(x) < F(xi+1) < F(x) + €,
so F,(x), F(x) € [F(x;) — €, F(x;) + 2€], thus |F,(x) — F(x)| < 3e.



This shows that sup |F,(x) — F(x)| < 3¢ when n > N; since € is arbitrary, we are done.
X
Exercise 3
We will use the fact that if X is a random variable taking values in Z, then F is constant, thus continuous,
in[a,a + 1) foreach a € Z.
Assume X,, — X in distribution. Fix m € Z, and notice that

P(X, =m) = Fx (m+1/2) = Fx (m—1/2) = Fx_(m+1/2) = Fx_(m - 1/2) = P(Xe, = m),

since m + 1/2,m — 1/2 are continuity points of Fy_,.

For the converse, we have seen in the lecture that in the definition of the weak convergence of probability
measures, it is equivalent to ask that it holds for every bounded bontinuous “test function”, or for every
continuous function with compact support. In other words, X, converges to X, in law if and only if for
every ¢ € C.(IR) (the set of continuous functions with compact support), we have E[p(X,)] = E[p(X)].
Let us fix ¢ € C.(R). Since it has compact support, there exists M > 0 such that ¢ = 0 outside of
[—M, M]. We thus have

M

M
Ele(X,)] = ), ¢(m) PX, =m] — > ¢(m) P[Xe = m] = E[¢(X)],
m=—M m=—M

and this finishes the proof.
Assume now that we only know the existence of
pm = lim P[X, = m].
n—+co
If },.cz pm = 1, then there exists a random variable X, such that p,, = P[X,, = m], and we are back to

the case considered above. But this need not be so, as can be seen by taking X,, = n. In such a case, X,
does not converge in probability.

Exercise 4
The first part of the statement was seen in the lecture. For the converse, assume X,, — X in distribution,
where X = ¢ almost surely. Notice that Fx(x) = 0 for x < c and Fx(x) = 1 for x > ¢, soevery x # cis a
continuity point of F, and then, by the hypothesis, we have Fx, (x) — Fx(x) for every x # c. Fix € > 0.
We have

P(X, —cl >€) <1-(Fx,(c+¢€) - Fx,(c—¢€) >0,

s0 X, — ¢ in probability.
Exercise 5

. lz .. .
We have seen that in order to check that X, + Y, X ¢, it is enough to verify that for every

n—oo

¢ € C.(R) (the space of continuous functions with compact support), we have

]E[QD(XH + Yn)] ’H—oo) ]E[()D(X + C)]

Let ¢ € C.(R) and € > 0. Since ¢ € C.(R), it is bounded, and it is also uniformly continuous: there
exists 6 > 0 such that

y—xI<d6 = lpQy) — )| < e

We now write
E[SD(XH + Yn)] = E[‘:D(Xn + Yn)]]-IYn—CK(S] + E[‘:D(Xn + Yn)]]-IYn—c|>6]-

Since ¢ is bounded and Y, — c in probability (see exercise 4), the second term tends to 0 as n tends to
infinity. For the first term, using uniform continuity, we obtain that

IEle(X, + Y Ljy,—ci<s] — Blo(X, + )1y, —c<s]| < &



Finally,

lim sup |E[@(X,, + )Ly, -q<s] — Ele(X, + ¢)1| < limsup llglleP[|Y, — ¢| > 6] = 0

n—o0o n—00

since ¢ is bounded and Y,, — c in probability. We have thus shown that

lim sup |E[o(X, + Y,)] — E[e(X,, + ¢)]| € &.

n—oo

Since € > 0 is arbitrary, the limsup is in fact equal to 0. We conclude using the fact that
Elp(X, + )] — Elp(X +o)].

Exercise 6

We consider first the case when X is uniformly distributed on [0, 1]. It is easy to see that M, — 1 a.s. as
n tends to infinity. We can say more, and show that n(1 — M,,) converges in distribution: for every x > 0,

Pn(l1-M,)>x]=P[M,<1-x/nl=0-x/n)"— e ".
n—00
We have thus shown that n(1 — M,) converges in distribution to an exponential random variable of

parameter 1. When X follows a Cauchy distribution (whose density is 77! (1 + x?)~! dx), it is clear that
M, tends to infinity a.s. In fact, M, /n converges in distribution:

1 M 1 "
— f dx
(n oo 14+ 22
1 7\
- (arctan(nx) + —)
T 2
1 s 16
— |7 — arctan | — — e .
T nx n—oo

The case of exponential distributions is treated similarly.

P[M,/n < x]

Exercise 7
® p is a metric.
The facts that p(F,G) = p(G, F) and p(F,G) > 0 are quite immediate to verify. Noticing that, for any
e>0,x€eR,
Fx-e)—€e<Fx—e)<F(x)<F(x+e)<F(x+e€) +e,

we see that p(F, F) = 0. Conversely, assume p(F,G) = 0. Then, there exists a sequence €, ~, 0 such
that, for every x and n,

Fx—¢)—-6¢,<Gx)<F(x+¢)+e¢€;

Gx—€)—6 <FXx)<Gx+e¢)+ ¢,

in particular, for every x and n we have
Fx)<Gx+e)+e, Gx)<F(x+eg)+e,.

Letting n — oo, we get F(x) < G(x+) = G(x) and G(x) < F(x+) = F(x), so F(x) = G(x). We have
thus proved that p(F,G) = 0 if and only if F = G. Finally, for the triangle inequality, consider three
distribution functions F, G, H and take sequences a,, b, such that a, \, p(F,G), b, \, p(G, H) and, for
each n,

G(x—ay)—a, < F(x) <G(x+ay,) + ay;

H(x-b,)-b, <G(x) < H(x+b,) +b,.



We then have
F(x)<Gx+ap) +a, <Hx+a, + by),

F(x)>2G(x—-ay)—ay) 2 Hx—a, —by) —a, — by,
so that p(F, H) < a, + by, then make n — oo to get p(F, H) < p(F, G) + p(G, H).

o o(F,, F) — 0 implies F, — F in distribution.
Fix ¢, ™\ 0 such that, for every x and n,

F(x—cy)—cy < Fp(x) < F(x+cy) + cy.
Fixing x and letting n — oo, we get
F(x-) < liminf F,(x) < limsup F,(x) < F(x+) = F(x),
so for all continuity points x of F, we have lim F,(x) — F(x), so F, — F in distribution.

e F, — F in distribution implies p(F,, F) — 0.

Fix € > 0. Find A > 0 such that —A, A are continuity points of F and F(-A),1 — F(A) < €. Now fix
X0, X1, - - - » Xk, all continuity points of F, such that xo = —A, x; = A,0 < x;41 — x; < € for all i. Choose N
such that n > N implies |F,(x;) — F(x;)| < € for each i. Now fix n > N and take x € R; we consider three
cases:

e x € [—A,A]. We can then take i such that x € [a;, a;+1]. We have
Fu(x) < Fp(aiv1) < Faiy1) + € < F(x + €) + €,

and similarly,
Fo(x) > Fy(a;)) > F(a;))—€> F(x—¢€)—e.

e x < —A. Notice that, for every y < —A, we have 0 < F(y), F,,(y) < F(—A) + € < 2¢€. So we have
F(x-2¢)—2e <0< Fu(x) <2€ < F(x +2¢) + 2e.
e x > A. Similarly to the previous case, here we have

F(x-2¢)—2e < F,(x) < F(x + 2¢) + 2e.

The three cases together show that p(F,, F) < 2e. Since € is arbitrary, the proof is complete.



