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Series 9: convergence in distribution Solutions

Exercise 1
Given x ∈ R, we will write x+ = max{x, 0}, x− = (−x)+. Fix n ∈ N; we have

1 =

∫
[ fn≤ f∞]

f∞(x)dx +

∫
[ fn> f∞]

f∞(x)dx =

∫
[ fn≤ f∞]

fn(x)dx +

∫
[ fn> f∞]

fn(x)dx,

so ∫
[ fn≤ f∞]

f∞(x)dx −
∫

[ fn≤ f∞]
fn(x)dx =

∫
[ fn> f∞]

fn(x)dx −
∫

[ fn> f∞]
f∞(x)dx,

that is to say, ∫
R

( f∞ − fn)+(x)dx =

∫
R

( fn − f∞)+(x)dx,

since
x ∈ [ fn ≤ f∞]c =⇒ ( f∞ − fn)(x)+ = 0,

x ∈ [ fn > f∞]c =⇒ ( fn − f∞)(x)+ = 0.

Let us write Fn, 1 6 n 6 ∞ for the respective c.d.f. of Xn, 1 6 n 6 ∞. Notice that, for every x ∈ R,

|F∞(x) − Fn(x)| =
∣∣∣∣∣∫ x

−∞

f∞(y)dy −
∫ x

−∞

fn(y)dy
∣∣∣∣∣ ≤ ∫

R
| f∞(y) − fn(y)|dy

=

∫
R

( f∞ − fn)+(y)dy +

∫
R

( fn − f∞)+(y)dy = 2
∫
R

( f∞ − fn)+(y)dy.

We have 0 ≤ ( f∞ − fn)+(y) ≤ f∞(y) and, by hypothesis, ( f∞ − fn)+(y) → 0 as n → ∞. Hence, by the
dominated convergence theorem we have

∫
R

( f∞ − fn)+(y)dy→ 0, so |F∞(x) − Fn(x)| → 0, and since x is
arbitrary, we are done.
An alternative way to show that ∫

R
| f∞(y) − fn(y)|dy

tends to 0 as n tends to infinity is to use Scheffé’s theorem, see exercise 6 of series 3 (actually, the
reasoning above contains a proof of Scheffé’s theorem).

Exercise 2
Fix ε > 0. Choose M such that F(−M) < ε, 1 − F(M) < ε. Since F is uniformly continuous on the
compact set [−M,M], there exists δ > 0 such that −M ≤ x, y ≤ M, |x− y| < δ =⇒ |F(x)− F(y)| < ε. Now
take a sequence x0, x1, . . . , xk such that x0 = −M, xk = M and for all i, 0 < xi+1 − xi < δ. Finally, choose
N such that n ≥ N =⇒ |F(xi) − Fn(xi)| < ε for all i. Fix n ≥ N, x ∈ R. We separately consider the cases:

• x < −M. We then have Fn(x) ≤ Fn(−M) ≤ F(−M) + ε < 2ε and F(x) ≤ F(−M) < ε, so
Fn(x), F(x) ∈ [0, 2ε] and thus |Fn(x) − F(x)| < 2ε.

• x > M. Similarly, we have Fn(x), F(x) ∈ [1 − 2ε, 1] and thus |Fn(x) − F(x)| < 2ε.

• x ∈ [−M,M]. Choose i such that x ∈ [xi, xi+1]. Notice that

F(xi) − ε < Fn(xi) ≤ Fn(x) ≤ Fn(xi+1) < F(xi+1) + ε < F(xi) + 2ε;

F(xi) ≤ F(x) ≤ F(xi+1) < F(xi) + ε,

so Fn(x), F(x) ∈ [F(xi) − ε, F(xi) + 2ε], thus |Fn(x) − F(x)| ≤ 3ε.



This shows that sup
x
|Fn(x) − F(x)| ≤ 3ε when n ≥ N; since ε is arbitrary, we are done.

Exercise 3
We will use the fact that if X is a random variable taking values in Z, then FX is constant, thus continuous,
in [a, a + 1) for each a ∈ Z.
Assume Xn → X in distribution. Fix m ∈ Z, and notice that

P(Xn = m) = FXn(m + 1/2) − FXn(m − 1/2)
n→∞
−→ FX∞(m + 1/2) − FX∞(m − 1/2) = P(X∞ = m),

since m + 1/2,m − 1/2 are continuity points of FX∞ .
For the converse, we have seen in the lecture that in the definition of the weak convergence of probability
measures, it is equivalent to ask that it holds for every bounded bontinuous “test function”, or for every
continuous function with compact support. In other words, Xn converges to X∞ in law if and only if for
every ϕ ∈ Cc(R) (the set of continuous functions with compact support), we haveE[ϕ(Xn)]→ E[ϕ(X∞)].
Let us fix ϕ ∈ Cc(R). Since it has compact support, there exists M > 0 such that ϕ = 0 outside of
[−M,M]. We thus have

E[ϕ(Xn)] =

M∑
m=−M

ϕ(m) P[Xn = m] −−−−→
n→∞

M∑
m=−M

ϕ(m) P[X∞ = m] = E[ϕ(X∞)],

and this finishes the proof.
Assume now that we only know the existence of

pm := lim
n→+∞

P[Xn = m].

If
∑

m∈Z pm = 1, then there exists a random variable X∞ such that pm = P[X∞ = m], and we are back to
the case considered above. But this need not be so, as can be seen by taking Xn = n. In such a case, Xn

does not converge in probability.

Exercise 4
The first part of the statement was seen in the lecture. For the converse, assume Xn → X in distribution,
where X = c almost surely. Notice that FX(x) = 0 for x < c and FX(x) = 1 for x ≥ c, so every x , c is a
continuity point of Fx and then, by the hypothesis, we have FXn(x) → FX(x) for every x , c. Fix ε > 0.
We have

P(|Xn − c| > ε) ≤ 1 − (FXn(c + ε) − FXn(c − ε))→ 0,

so Xn → c in probability.

Exercise 5

We have seen that in order to check that Xn + Yn
law
−−−−→
n→∞

X + c, it is enough to verify that for every
ϕ ∈ Cc(R) (the space of continuous functions with compact support), we have

E[ϕ(Xn + Yn)] −−−−→
n→∞

E[ϕ(X + c)].

Let ϕ ∈ Cc(R) and ε > 0. Since ϕ ∈ Cc(R), it is bounded, and it is also uniformly continuous: there
exists δ > 0 such that

|y − x| 6 δ ⇒ |ϕ(y) − ϕ(x)| 6 ε.

We now write
E[ϕ(Xn + Yn)] = E[ϕ(Xn + Yn)1|Yn−c|6δ] +E[ϕ(Xn + Yn)1|Yn−c|>δ].

Since ϕ is bounded and Yn → c in probability (see exercise 4), the second term tends to 0 as n tends to
infinity. For the first term, using uniform continuity, we obtain that∣∣∣E[ϕ(Xn + Yn)1|Yn−c|6δ] −E[ϕ(Xn + c)1|Yn−c|6δ]

∣∣∣ 6 ε.



Finally,

lim sup
n→∞

∣∣∣E[ϕ(Xn + c)1|Yn−c|6δ] −E[ϕ(Xn + c)]
∣∣∣ 6 lim sup

n→∞
‖ϕ‖∞P[|Yn − c| > δ] = 0

since ϕ is bounded and Yn → c in probability. We have thus shown that

lim sup
n→∞

|E[ϕ(Xn + Yn)] −E[ϕ(Xn + c)]| 6 ε.

Since ε > 0 is arbitrary, the limsup is in fact equal to 0. We conclude using the fact that

E[ϕ(Xn + c)] −−−−→
n→∞

E[ϕ(X + c)].

Exercise 6

We consider first the case when X1 is uniformly distributed on [0, 1]. It is easy to see that Mn → 1 a.s. as
n tends to infinity. We can say more, and show that n(1 − Mn) converges in distribution: for every x > 0,

P[n(1 − Mn) > x] = P[Mn 6 1 − x/n] = (1 − x/n)n −−−−→
n→∞

e−x.

We have thus shown that n(1 − Mn) converges in distribution to an exponential random variable of
parameter 1. When X1 follows a Cauchy distribution (whose density is π−1(1 + x2)−1 dx), it is clear that
Mn tends to infinity a.s. In fact, Mn/n converges in distribution:

P[Mn/n 6 x] =

(
1
π

∫ nx

−∞

1
1 + x2 dx

)n

=

(
1
π

(
arctan(nx) +

π

2

))n

=

(
1
π

(
π − arctan

(
1
nx

)))n

−−−−→
n→∞

e−1/(πx).

The case of exponential distributions is treated similarly.

Exercise 7
• ρ is a metric.
The facts that ρ(F,G) = ρ(G, F) and ρ(F,G) ≥ 0 are quite immediate to verify. Noticing that, for any
ε > 0, x ∈ R,

F(x − ε) − ε ≤ F(x − ε) ≤ F(x) ≤ F(x + ε) ≤ F(x + ε) + ε,

we see that ρ(F, F) = 0. Conversely, assume ρ(F,G) = 0. Then, there exists a sequence εn ↘ 0 such
that, for every x and n,

F(x − εn) − εn ≤ G(x) ≤ F(x + εn) + εn;

G(x − εn) − εn ≤ F(x) ≤ G(x + εn) + εn;

in particular, for every x and n we have

F(x) ≤ G(x + εn) + εn, G(x) ≤ F(x + εn) + εn.

Letting n → ∞, we get F(x) ≤ G(x+) = G(x) and G(x) ≤ F(x+) = F(x), so F(x) = G(x). We have
thus proved that ρ(F,G) = 0 if and only if F = G. Finally, for the triangle inequality, consider three
distribution functions F,G,H and take sequences an, bn such that an ↘ ρ(F,G), bn ↘ ρ(G,H) and, for
each n,

G(x − an) − an ≤ F(x) ≤ G(x + an) + an;

H(x − bn) − bn ≤ G(x) ≤ H(x + bn) + bn.



We then have
F(x) ≤ G(x + an) + an ≤ H(x + an + bn),

F(x) ≥ G(x − an) − an) ≥ H(x − an − bn) − an − bn,

so that ρ(F,H) ≤ an + bn, then make n→ ∞ to get ρ(F,H) ≤ ρ(F,G) + ρ(G,H).

• ρ(Fn, F)→ 0 implies Fn → F in distribution.
Fix cn ↘ 0 such that, for every x and n,

F(x − cn) − cn ≤ Fn(x) ≤ F(x + cn) + cn.

Fixing x and letting n→ ∞, we get

F(x−) ≤ lim inf Fn(x) ≤ lim sup Fn(x) ≤ F(x+) = F(x),

so for all continuity points x of F, we have lim Fn(x)→ F(x), so Fn → F in distribution.

• Fn → F in distribution implies ρ(Fn, F)→ 0.
Fix ε > 0. Find A > 0 such that −A, A are continuity points of F and F(−A), 1 − F(A) < ε. Now fix
x0, x1, . . . , xk, all continuity points of F, such that x0 = −A, xk = A, 0 < xi+1 − xi < ε for all i. Choose N
such that n ≥ N implies |Fn(xi) − F(xi)| < ε for each i. Now fix n ≥ N and take x ∈ R; we consider three
cases:

• x ∈ [−A, A]. We can then take i such that x ∈ [ai, ai+1]. We have

Fn(x) ≤ Fn(ai+1) ≤ F(ai+1) + ε ≤ F(x + ε) + ε,

and similarly,
Fn(x) ≥ Fn(ai) ≥ F(ai) − ε ≥ F(x − ε) − ε.

• x < −A. Notice that, for every y < −A, we have 0 ≤ F(y), Fn(y) ≤ F(−A) + ε ≤ 2ε. So we have

F(x − 2ε) − 2ε ≤ 0 ≤ Fn(x) ≤ 2ε ≤ F(x + 2ε) + 2ε.

• x > A. Similarly to the previous case, here we have

F(x − 2ε) − 2ε ≤ Fn(x) ≤ F(x + 2ε) + 2ε.

The three cases together show that ρ(Fn, F) < 2ε. Since ε is arbitrary, the proof is complete.


