Series 7: convergence in probability, strong law of large numbers

Solutions

Exercise 1

Fix an arbitrary $\epsilon > 0$. Since $|X - Y| \leq |X - X_n| + |X_n - Y|$, then

$$\begin{split} \left\{\omega \in \Omega: |X(\omega) - Y(\omega)| > \epsilon \right\} & \subseteq \quad \left\{\omega \in \Omega: |X_n(\omega) - X(\omega)| + |X_n(\omega) - Y(\omega)| > \epsilon \right\} \\ & \subseteq \quad \left\{\omega \in \Omega: |X_n(\omega) - X(\omega)| > \epsilon/2 \right\} \\ & \bigcup \left\{\omega \in \Omega: |X_n(\omega) - Y(\omega)| > \epsilon/2 \right\}. \end{split}$$

Therefore,

$$P[|X-Y| > \epsilon] \leq P[|X_n-X| > \epsilon/2] + P[|X_n-Y| > \epsilon/2] \rightarrow 0$$
, as $n \rightarrow \infty$.

We have proved that $P[|X - Y| > \epsilon] = 0$ for any $\epsilon > 0$. Finally,

$${X \neq Y} = \bigcup_{n=1}^{+\infty} {\{|X - Y| > 1/n\}},$$

which is a sequence of increasing events. We can thus conclude that

$$P[X \neq Y] = \lim_{n \to \infty} P[|X - Y| > 1/n] = 0,$$

which means that X = Y a.s..

Exercise 2

Recall the following fact from Real Analysis:

Lemma 1. Let $(a_n)_{n\geqslant 1}$ be a sequence of real numbers and let $a\in\mathbb{R}$. $a_n\to a$ if and only if for every subsequence $(a_{n_k})_{k\geqslant 1}$ there is a further subsequence $(a_{n_{kr}})_{\ell\geqslant 1}$ that converges to a.

Fix an arbitrary $\epsilon > 0$. It suffices to check that $P[|X_n - Z| > \epsilon] \to 0$ as $n \to \infty$. For it, we apply the above lemma for the sequence of real numbers

$$(P[|X_n - Z| > \epsilon] : n \ge 1).$$

Let us fix an arbitrary subsequence $(P[|X_{n_k}-Z|>\epsilon]:k\geqslant 1)$. By hypothesis, there exists a further subsequence $(X_{n_{k_\ell}})_{\ell\geqslant 1}$ such that $X_{n_{k_\ell}}\stackrel{P}{\to} Z$ and then $P[|X_{n_{k_\ell}}-Z|>\epsilon]\to 0$ as $\ell\to\infty$. Finally, Lemma 1 applies and we get $P[|X_n-Z|>\epsilon]\to 0$.

Exercise 3

We shall apply Exercice 2 to the sequence $f(X_n)$. So, fix an arbitrary subsequence $(f(X_{n_k}))_{k\geqslant 1}$. Since $X_n \stackrel{P}{\to} X$, we have $X_{n_k} \stackrel{P}{\to} X$. Furthermore, there exists a subsequence $(X_{k_\ell})_{\ell\geqslant 1}$ such that $X_{n_{k_\ell}} \to X$ almost surely as $\ell \to \infty$. Since f is continuous, we have $f(X_{n_{k_\ell}}) \to f(X)$ almost surely. In particular, $f(X_{n_{k_\ell}}) \stackrel{P}{\to} f(X)$ and finally the desired result follows from Exercice 2.

Exercise 4

The assertion follows from the following observation:

$$\frac{X_n}{n} = \frac{S_n}{n} - \left(\frac{n-1}{n}\right) \frac{S_{n-1}}{n-1} , \quad \forall n \ge 2 ,$$

and from the fact that both terms in this difference converges to 0 in probability.

Exercise 5

For each $i \ge 1$, we have

$$\mathbb{E}(X_i^2) = \text{Var}(X_i) = 1;$$

$$\mathbb{E}((X_i - 1)^2) = \mathbb{E}(X_i^2) + 1 - 2\mathbb{E}(X_i) = 2.$$

Since X_1^2, X_2^2, \dots are independent and integrable, the strong law of large numbers implies that the event

$$A = \left\{ \frac{X_1^2 + \ldots + X_n^2}{n} \to 1 \right\}$$

has probability 1. Similarly, $(X_1 - 1)^2$, $(X_2 - 1)^2$, ... are independent and integrable, so the event

$$B = \left\{ \frac{(X_1 - 1)^2 \dots + (X_n - 1)^2}{n} \to 2 \right\}$$

has probability 1. Then, $\mathbb{P}(A \cap B) = 1$ and $\omega \in A \cap B$ implies

$$\frac{X_1^2(\omega) + \ldots + X_n^2(\omega)}{(X_1(\omega) - 1)^2 + \ldots + (X_n(\omega) - 1)^2} = \frac{X_1^2(\omega) + \ldots + X_n^2(\omega)}{n} \cdot \frac{n}{(X_1(\omega) - 1)^2 + \ldots + (X_n(\omega) - 1)^2} \xrightarrow[n \to \infty]{} \frac{1}{2}.$$

Exercise 6

 X_1 is integrable:

$$E[X_1] = \int_{\mathbb{R}} x f(x) dx = \int_{-1/2}^{+\infty} x e^{-(x+1/2)} dx = \frac{1}{2}.$$

Then, by the law of large numbers, $\frac{S_n}{n} \to 1/2$ almost surely, and thus $S_n \to +\infty$ almost surely.

Exercise 7

A simple computation provides

$$E[\ln(X_1)] = \int_0^1 \ln(u) du = -1.$$

Since

$$\ln\left(\left(\prod_{i=1}^{n} X_{i}\right)^{1/n}\right) = \frac{\sum_{i=1}^{n} \ln(X_{i})}{n}$$

and $(\ln(X_i))_{i\geq 1}$ are i.i.d., by the strong law of large numbers, we have

$$\ln\left(\left(\prod_{i=1}^n X_i\right)^{1/n}\right) \to -1, \quad \text{a.s.}$$

which in turn implies that

$$\left(\prod_{i=1}^n X_i\right)^{1/n} \to e^{-1}, \quad \text{a.s.}$$

Exercise 8

We will take $\Omega = (0, 1]$ with Borel σ -algebra and Lebesgue measure.

For $n \ge 1$ and $i \in \{2^n, \dots, 2^{n+1} - 1\}$, define

$$X_i = I_{\left(\frac{i-2^n}{2^n}, \frac{i-2^n+1}{2^n}\right)},$$

where *I* denotes the indicator function. Notice that if $j \ge 2^n$, then X_j is the indicator function of an interval of length less than 2^{-n} , and this implies that X_i converges to 0 in probability. Now, notice that for each $x \in (0, 1]$, there are infinitely many values of *i* such that $X_i(x) = 1$, so we can define by induction

$$N_0 \equiv 0;$$
 $N_{n+1}(x) = \inf\{i > N_n(x) : X_i = 1\} \quad (x \in (0, 1], n \ge 0).$

Hence, by construction we have $X_{N_n}(x) = 1$ for all x and all n, and in particular $X_{N_n} \to 1$ almost surely as $n \to \infty$.

Exercise 9

1) Let i_1, \ldots, i_{n-1} be a sequence of strictly positive integers. We can write the probability of the event

$$\forall k \leqslant n-1: \tau_{k+1}^n - \tau_k^n = i_k$$

as the following sum

$$\sum_{\sigma \in S_n} P[X_1 = \sigma(1) \text{ et } \forall k \le n-1 :$$

$$X_{i_1+\dots+i_{k-1}+2},\dots,X_{i_1+\dots+i_k} \in \{\sigma(1),\dots,\sigma(k)\}\ \text{et }X_{i_1+\dots+i_k+1} = \sigma(k+1)$$

where S_n is the symmetric group with n elements. By independence of the X_i , this probability is equal to

$$\sum_{\sigma \in S_n} \frac{1}{n} \prod_{k=1}^{n-1} P\left[X_{i_1 + \dots + i_{k-1} + 2} \in \{\sigma(1), \dots, \sigma(k)\}\right] \cdots$$

$$P\left[X_{i_1+\cdots+i_k} \in \{\sigma(1),\ldots,\sigma(k)\}\right] P\left[X_{i_1+\cdots+i_k+1} = \sigma(k+1)\right].$$

This expression is finally equal to

$$\sum_{\sigma \in S_n} \frac{1}{n} \prod_{k=1}^{n-1} \left(\frac{k}{n}\right)^{i_k-1} \frac{1}{n} = \prod_{k=1}^{n-1} \left(\frac{k}{n}\right)^{i_k-1} \left(1 - \frac{k}{n}\right).$$

We recognize here the distribution of a sequence of independent geometric random variables, with respective parameters 1 - k/n.

2) Using the above result, together with the fact that

$$T_n = \sum_{k=1}^{n-1} (\tau_{k+1}^n - \tau_k^n),$$

we can estimate the expectation and the variance of T_n :

$$E[T_n] = \sum_{k=1}^{n-1} \frac{1}{1 - k/n} = n \sum_{k=1}^{n-1} \frac{1}{n - k} \sim n \log(n),$$

$$Var(T_n) = n \sum_{k=1}^{n-1} \frac{k}{(n-k)^2} \le n^2 \sum_{k=1}^{+\infty} \frac{1}{k^2}.$$

Let $\epsilon > 0$. Chebyshev's inequality tells us

$$P[|T_n - E[T_n]| > \epsilon n \log(n)] \le \frac{\operatorname{Var}(T_n)}{\epsilon^2 n^2 \log^2(n)} \xrightarrow[n \to \infty]{} 0,$$

which proves that $|T_n - E[T_n]|/(n \log(n))$ tends to 0 in probability. The conclusion comes noting that $E[T_n]/(n \log(n))$ tends to 1 when n tends to infinity.

Remark. Erdős and Rényi (1961) have shown that $T_n/n - \log(n)$ converges to a simple limit distribution.