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Series 7: convergence in probability, strong law of large numbers Solutions

Exercise 1
Fix an arbitrary ε > 0. Since |X − Y | 6 |X − Xn| + |Xn − Y | , then{

ω ∈ Ω : |X(ω) − Y(ω)| > ε
}
⊆

{
ω ∈ Ω : |Xn(ω) − X(ω)| + |Xn(ω) − Y(ω)| > ε

}
⊆

{
ω ∈ Ω : |Xn(ω) − X(ω)| > ε/2

}⋃ {
ω ∈ Ω : |Xn(ω) − Y(ω)| > ε/2

}
.

Therefore,

P[ |X − Y | > ε ] 6 P[ |Xn − X| > ε/2 ] + P[ |Xn − Y | > ε/2 ] → 0 , as n→ ∞ .

We have proved that P[ |X − Y | > ε ] = 0 for any ε > 0 . Finally,

{X , Y} =

+∞⋃
n=1

{|X − Y | > 1/n},

which is a sequence of increasing events. We can thus conclude that

P[X , Y] = lim
n→∞

P[|X − Y | > 1/n] = 0,

which means that X = Y a.s..

Exercise 2
Recall the following fact from Real Analysis:

Lemma 1. Let (an)n>1 be a sequence of real numbers and let a ∈ R. an → a if and only if for every
subsequence (ank )k>1 there is a further subsequence (ank`

)`>1 that converges to a.

Fix an arbitrary ε > 0. It suffices to check that P[ |Xn − Z| > ε ] → 0 as n → ∞. For it, we apply the
above lemma for the sequence of real numbers(

P[ |Xn − Z| > ε ] : n > 1
)
.

Let us fix an arbitrary subsequence
(
P[ |Xnk − Z| > ε ] : k > 1

)
. By hypothesis, there exists a further

subsequence (Xnk`
)`>1 such that Xnk`

P
−→ Z and then P[ |Xnk`

− Z| > ε ] → 0 as ` → ∞ . Finally,
Lemma 1 applies and we get P[ |Xn − Z| > ε ]→ 0 .

Exercise 3
We shall apply Exercice 2 to the sequence f (Xn) . So, fix an arbitrary subsequence

(
f (Xnk )

)
k>1 . Since

Xn
P
−→ X , we have Xnk

P
−→ X . Furthermore, there exists a subsequence

(
Xk`

)
`>1 such that Xnk`

→ X
almost surely as ` → ∞. Since f is continuous, we have f (Xnk`

) → f (X) almost surely. In particular,

f (Xnk`
)

P
−→ f (X) and finally the desired result follows from Exercice 2.

Exercise 4
The assertion follows from the following observation:

Xn

n
=

S n

n
−

(n − 1
n

) S n−1

n − 1
, ∀n > 2 ,



and from the fact that both terms in this difference converges to 0 in probability.

Exercise 5
For each i ≥ 1, we have

E(X2
i ) = Var(Xi) = 1;

E((Xi − 1)2) = E(X2
i ) + 1 − 2E(Xi) = 2.

Since X2
1 , X

2
2 , . . . are independent and integrable, the strong law of large numbers implies that the event

A =

X2
1 + . . . + X2

n

n
→ 1


has probability 1. Similarly, (X1 − 1)2, (X2 − 1)2, . . . are independent and integrable, so the event

B =

{
(X1 − 1)2 . . . + (Xn − 1)2

n
→ 2

}
has probability 1. Then, P(A ∩ B) = 1 and ω ∈ A ∩ B implies

X2
1(ω) + . . . + X2

n(ω)

(X1(ω) − 1)2 + . . . + (Xn(ω) − 1)2

=
X2

1(ω) + . . . + X2
n(ω)

n
·

n
(X1(ω) − 1)2 + . . . + (Xn(ω) − 1)2 −−−−→n→∞

1
2
.

Exercise 6
X1 is integrable:

E[X1] =

∫
R

x f (x) dx =

∫ +∞

−1/2
xe−(x+1/2) dx =

1
2
.

Then, by the law of large numbers, S n
n → 1/2 almost surely, and thus S n → +∞ almost surely.

Exercise 7
A simple computation provides

E
[

ln(X1)
]

=

∫ 1

0
ln(u)du = −1 .

Since

ln


 n∏

i=1

Xi

1/n  =

∑n
i=1 ln(Xi)

n

and
(

ln(Xi)
)
i>1 are i.i.d., by the strong law of large numbers, we have

ln


 n∏

i=1

Xi

1/n  → −1 , a.s.

which in turn implies that  n∏
i=1

Xi

1/n

→ e−1 , a.s.

Exercise 8
We will take Ω = (0, 1] with Borel σ-algebra and Lebesgue measure.



For n ≥ 1 and i ∈ {2n, . . . , 2n+1 − 1}, define

Xi = I( i−2n
2n , i−2n+1

2n
],

where I denotes the indicator function. Notice that if j ≥ 2n, then X j is the indicator function of an
interval of length less than 2−n, and this implies that Xi converges to 0 in probability. Now, notice that for
each x ∈ (0, 1], there are infinitely many values of i such that Xi(x) = 1, so we can define by induction

N0 ≡ 0; Nn+1(x) = inf{i > Nn(x) : Xi = 1} (x ∈ (0, 1], n ≥ 0).

Hence, by construction we have XNn(x) = 1 for all x and all n, and in particular XNn → 1 almost surely
as n→ ∞.

Exercise 9
1) Let i1, . . . , in−1 be a sequence of strictly positive integers. We can write the probability of the event

∀k 6 n − 1 : τn
k+1 − τ

n
k = ik

as the following sum∑
σ∈S n

P
[
X1 = σ(1) et ∀k 6 n − 1 :

Xi1+···+ik−1+2, . . . , Xi1+···+ik ∈ {σ(1), . . . , σ(k)} et Xi1+...+ik+1 = σ(k + 1)
]
,

where S n is the symmetric group with n elements. By independence of the Xi, this probability is equal to

∑
σ∈S n

1
n

n−1∏
k=1

P
[
Xi1+···+ik−1+2 ∈ {σ(1), . . . , σ(k)}

]
· · ·

P
[
Xi1+···+ik ∈ {σ(1), . . . , σ(k)}

]
P

[
Xi1+...+ik+1 = σ(k + 1)

]
.

This expression is finally equal to∑
σ∈S n

1
n

n−1∏
k=1

(
k
n

)ik−1 1
n

=

n−1∏
k=1

(
k
n

)ik−1 (
1 −

k
n

)
.

We recognize here the distribution of a sequence of independent geometric random variables, with re-
spective parameters 1 − k/n.
2) Using the above result, together with the fact that

Tn =

n−1∑
k=1

(τn
k+1 − τ

n
k),

we can estimate the expectation and the variance of Tn:

E[Tn] =

n−1∑
k=1

1
1 − k/n

= n
n−1∑
k=1

1
n − k

∼ n log(n),

Var(Tn) = n
n−1∑
k=1

k
(n − k)2 6 n2

+∞∑
k=1

1
k2 .

Let ε > 0. Chebyshev’s inequality tells us

P
[
|Tn − E[Tn]| > εn log(n)

]
6

Var(Tn)
ε2n2 log2(n)

−−−−→
n→∞

0,

which proves that |Tn − E[Tn]|/(n log(n)) tends to 0 in probability. The conclusion comes noting that
E[Tn]/(n log(n)) tends to 1 when n tends to infinity.
Remark. Erdős and Rényi (1961) have shown that Tn/n− log(n) converges to a simple limit distribution.


