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Series 7: convergence in probability, strong law of large numbers Solutions
Exercise 1

Fix an arbitrary € > 0. Since |X — Y| < |X — X,,| +|X,, — Y|, then

{w €Q:X(w) - Y(w)| > e} C {w € Q: X, (w) - X(W)| + X, (w) = Y(w)| > e}

N

{w € Q1 Xu(w) - X(@)] > /2]
| {we: Xuw) - Y > 2} .
Therefore,
PlIX-Y|>€e]l] < PIIX,—X|>€/2] + P[IX,—Y|>€/2] - 0, asn— .

We have proved that P[|[X — Y| > €] =0 forany € > 0. Finally,

X#Y)={ JIIX=¥>1/n,

n=1

which is a sequence of increasing events. We can thus conclude that
PIX#Y]=1lim P[IX-Y|>1/n] =0,
n—oo

which means that X = Y a.s..

Exercise 2
Recall the following fact from Real Analysis:

Lemma 1. Let (a,),>1 be a sequence of real numbers and let a € R. a, — a if and only if for every
subsequence (an, )i>1 there is a further subsequence (ank[ )es1 that converges to a.

Fix an arbitrary € > 0. It suffices to check that P[|X,, — Z| > €] — 0 as n — oo. For it, we apply the
above lemma for the sequence of real numbers

(PlIX,—Z|>€]:n>1).

Let us fix an arbitrary subsequence (P[|X,, —Z| > €] : k > 1) . By hypothesis, there exists a further
P

subsequence (Xnk[){;;l such that Xnk[ — Z and then P[ |Xnkf —Z|>€] - 0 as £ — oo . Finally,

Lemma 1 applies and we get P[|X, —Z| >€]— 0.

Exercise 3

We shall apply Exercice 2 to the sequence f(X,) . So, fix an arbitrary subsequence (f(X,,));s; - Since

P P .
X, — X , we have X,, — X . Furthermore, there exists a subsequence (Xy,).; such that Xn, = X
almost surely as £ — oo. Since f is continuous, we have f(X,,k[) — f(X) almost surely. In particular,

f (Xnk[) i f(X) and finally the desired result follows from Exercice 2.

Exercise 4
The assertion follows from the following observation:

Xn Sn (n—l)Sn_l ’ vn>2’

n ‘"n-1



and from the fact that both terms in this difference converges to 0 in probability.

Exercise 5

For each i > 1, we have
E(X}) = Var(X;) = 1;

E(X; - D?) = E(X}) + 1 - 2E(X;) = 2.

Since Xf, X%, ... are independent and integrable, the strong law of large numbers implies that the event

Xi ...+ X}
A= Ty
n

has probability 1. Similarly, (X; — 1)?, (X> — 1), ... are independent and integrable, so the event

Rty 132
B:{(Xl 1)..’.1+(X,, 1) _)2}

has probability 1. Then, P(A N B) = 1 and w € A N B implies

X w) + ...+ XA (w)
X1(@) - 12+ ... + K@) - 1)2
X w)+ ...+ X2 (w) n 1
- n CX1(@) = D2+ .+ (K@) — 1)2 noe0 2

Exercise 6
X is integrable:

+00 1
E[X)] = f X f()dx = f e gy =
R _

12
Then, by the law of large numbers, % — 1/2 almost surely, and thus S,, — +oc0 almost surely.
Exercise 7
A simple computation provides

1
E[ In(X))] = j; In(w)du = —1.

W(f1)”

i=1

Since
?=1 1n(Xi)

n

and (In(X;)),, are i.i.d., by the strong law of large numbers, we have

n 1/n
(1_[ Xl] - e_l , a.s.

i=1

— -1, as.

which in turn implies that

Exercise 8
We will take Q = (0, 1] with Borel o-algebra and Lebesgue measure.



Forn > 1andie {2%,...,2" — 1}, define
zn

Xi = I(i—Z” i—2”+1]’
) n

where I denotes the indicator function. Notice that if j > 2", then X is the indicator function of an
interval of length less than 27", and this implies that X; converges to O in probability. Now, notice that for
each x € (0, 1], there are infinitely many values of i such that X;(x) = 1, so we can define by induction

No = 0; Npr1(x) =inf{i > N,(x) : X; =1} (x€(0,1], n > 0).

Hence, by construction we have Xy, (x) = 1 for all x and all n, and in particular Xy, — 1 almost surely
asn — oo,

Exercise 9
1) Letiy,...,i,—1 be a sequence of strictly positive integers. We can write the probability of the event

Ve<n—1:1,, -1, =i
as the following sum

ZP[Xl =o(l)etVk<n—1:

€S,

Xi1+-~-+ik,1+27 cee 9Xi1+~--+ik € {0-(1)9 R O-(k)} et Xi1+...+ik+l = O-(k + 1)],

where S, is the symmetric group with n elements. By independence of the X;, this probability is equal to

1 n-1
20 [ [P Xisi 2 € oD o )]

oeS, k=1
P[Xiy+otip € lo(1), ..., 0(O} P[Xi 4. 4ip+1 = ok + 1)].

This expression is finally equal to
1 n—1 k ir—1 1 n—1 k ir—1 k
2alll) a=1E) (-3
oeS, k=1 k=1

We recognize here the distribution of a sequence of independent geometric random variables, with re-
spective parameters 1 — k/n.
2) Using the above result, together with the fact that

n—1
To= ) (T =T,
k=1

we can estimate the expectation and the variance of T;:

n—1 1 n—1 1
E[T,] = Z = &/n = ”Z P nlog(n),
k=1 k=1
n—1 k +00 1
Var(T,) = <t ) —.
ar(T,) n; =2 n kzz; 2
Let € > 0. Chebyshev’s inequality tells us
Var(T),)

P(IT,, - EIT, ]I > enlog(n)] <

€2n? log*(n) o
which proves that |T,, — E[T,]|/(nlog(n)) tends to O in probability. The conclusion comes noting that

E[T,]/(nlog(n)) tends to 1 when n tends to infinity.
Remark. Erd6s and Rényi (1961) have shown that T, /n — log(n) converges to a simple limit distribution.



