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Series 13: convergence of moments Solutions

Exercise 1
Let X follow the standard Gaussian law. We recall that

EX2n =
(2n)!
2nn!

=: µ2n.

Using Stirling’s formula, we obtain
µ2k ∼ 2k+1/2kke−k,

and thus (µ2k)1/2k ∼
√

2k/e = O(2k).

Exercise 2
Possibly centering and renormalizing the Xi, we can assume that E[X1] = 0 and E[(X1)2] = 1. We will
write µk = E[(X1)k]. We would like to compute the moments of S n =

∑n
i=1 Xi.

E


 n∑

i=1

Xi

k =
∑

i∈{1,...,n}k
E[Xi1 · · · Xik ]︸          ︷︷          ︸

:=ai

,

where we write i = (i1, . . . , ik). Since the random variables are i.i.d., the quantity ai only depends on
the number of times each index is repeated. Let j1 < · · · < jl be the distinct elements appearing in i, so
that the sets {i1, . . . , ik} and { j1, . . . , jl} are equal. Then j = { j1, . . . , jl} belongs to Pl

n, the collection of
subsets of {1, . . . n} with l elements. Let mi be the number of times (at least equal to 1) that ji appears in
the sequence i1, . . . , ik. Note that m = (m1, . . . ,ml) takes values in the set

Ml =

(m′1, . . . ,m
′
l) ∈ (N∗)l :

l∑
i=1

m′i = k

 .
We have thus defined an application

ϕ :
{
{1, . . . n}k →

⋃k
l=1Ml × P

l
n

i 7→ (m, j).

Note that if ϕ(i) = (m, j), then

ai = E[(X j1)m1 · · · (X jl)
ml] = µm1 · · · µml ,

and thus ai depends in fact only on m. By abuse of notation, we will write ai = am. We thus obtain the
following decomposition: ∑

i∈{1,...,n}k
ai =

k∑
l=1

∑
(m, j)∈Ml×P

l
n

|ϕ−1(m, j)| am.

We now need to compute |ϕ−1(m, j)|. A combinatorial argument show that this number is the multinomial
coefficient Cm, which is given by

Cm =
k!

m1! · · ·ml!
,



but for our purpose, we only need to see that it does not depend on j, and to know C2,...,2. We thus obtain

(1)
∑

i∈{1,...,n}k
ai =

k∑
l=1

Cl
n

∑
m∈Ml

Cm am,

where Cl
n is the usual binomial coefficient.

We have now done the most difficult part of the work ! Note that if one of the mi’s is 1, then am = 0 since
µ1 = 0. In other words, in order for am to be non-zero, it must be that all the mi’s are at least equal to 2.
This implies that in the sum over l in (1), we can restrict ourselves to the l’s such that 2l 6 k.
If k is odd, say k = 2q + 1, then we obtain that l 6 q. Since moreover Cl

n = O(nl), it comes that

E


 n∑

i=1

Xi

2q+1 = O(nq),

which implies that

(2) E


n−1/2

n∑
i=1

Xi

2q+1 −−−−→n→∞
0.

On the other hand, if k is even, say k = 2q, then for the same reason, the term corresponding to l = q is
the only non-negligible one, and we obtain:

E


 n∑

i=1

Xi

2q ∼ Cq
n C(2, . . . , 2)︸     ︷︷     ︸

q times

(µ2)q,

from which it follows that

(3) E


n−1/2

n∑
i=1

Xi

2q −−−−→n→∞

(2q)!
2q q!

.

The moments obtained in (2) and (3) are indeed the moments of a standard Gaussian random variable,
which is what we wanted to prove.

Exercise 3
Let X1, X2, . . . be i.i.d. integrable random variables. We can assume that E[X1] = 0. Since X1 is in L1,
the random variable ∣∣∣∣∣ d

dt
eitX1

∣∣∣∣∣ = |X1|

is uniformly dominated over t by an integrable random variable, so the characteristic function of X1 (let
us write it ϕ) is differentiable onR, and with derivative

ϕ′(t) = iE[X1eitX1].

In particular, ϕ′(0) = 0. In other words, η defined by

η(t) =
ϕ(t) − 1

t
tends to 0 as t tends to 0.
The characteristic function of

∑n
i=1 Xi/n, evaluated at t, is equal to

ϕ(t/n)n =

(
1 +

t
n
η
( t
n

))n
.

The function η taking its values in the complex plane, some care is necessary before using the logarithm,
but since η tends to 0 at 0, one can justify the following computation:

ϕ(t/n)n = exp
(
n log

(
1 +

t
n
η
( t
n

)))
= exp

(
n

t
n
η
( t
n

)
(1 + o(1))

)
−−−−→
n→∞

1,

and this proves the result.


