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Series 13: convergence of moments Solutions

Exercise 1
Let X follow the standard Gaussian law. We recall that
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Using Stirling’s formula, we obtain
[t ~ K12k gk,

and thus (o) /% ~ \2kJe = O(2k).

Exercise 2
Possibly centering and renormalizing the X;, we can assume that E[X;] = 0 and E [(X1)?] = 1. We will
write ux = E[(X) Y¥]. We would like to compute the moments of S, = 37 | X;.
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where we write i = (iy,...,i). Since the random variables are i.i.d., the quantity a; only depends on
the number of times each index is repeated. Let j; < --- < j; be the distinct elements appearing in i, so
that the sets {i1,..., i} and {ji,..., ji} are equal. Then j = {ji,..., j;} belongs to sz, the collection of

subsets of {1,...n} with / elements. Let m; be the number of times (at least equal to 1) that j; appears in
the sequence i1, ..., ;. Note that m = (m;, ..., m) takes values in the set

E = > EIX, - X],

=a;
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M; = {(m'l,...,m;) e (N*): Zm: — k}.
i=1
We have thus defined an application

o {L..nf* > U M xP,
' i = (m, )).
Note that if ¢(i) = (m, 1)’ then

aé = E[(le)ml e (le)ml] = /Jml o '/Jmp

and thus a; depends in fact only on m. By abuse of notation, we will write a; = a,,. We thus obtain the

following decomposition:
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We now need to compute ¢~ (m, j)|. A combinatorial argument show that this number is the multinomial

coeflicient C,,, which is given by
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16{1 ..... n = mEM;

where C!, is the usual binomial coefficient.

We have now done the most difficult part of the work ! Note that if one of the m;’s is 1, then a,, = 0 since
u1 = 0. In other words, in order for a,, to be non-zero, it must be that all the m;’s are at least equal to 2.
This implies that in the sum over / in (1), we can restrict ourselves to the I’s such that 2/ < k.

If k is odd, say k = 2¢ + 1, then we obtain that [ < g. Since moreover C,, = O(n'), it comes that
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which implies that
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On the other hand, if & is even, say k = 2¢, then for the same reason, the term corresponding to / = g is
the only non-negligible one, and we obtain:
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from which it follows that
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The moments obtained in (2) and (3) are indeed the moments of a standard Gaussian random variable,
which is what we wanted to prove.

Exercise 3
Let X1, X5, ... be i.i.d. integrable random variables. We can assume that E[X;] = 0. Since X; is in L,

the random variable
itXy

d
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is uniformly dominated over ¢ by an integrable random variable, so the characteristic function of X; (let
us write it ¢) is differentiable on R, and with derivative

¢'(0) = iE[Xie"™].
In particular, ¢’(0) = 0. In other words, 17 defined by
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tends to O as ¢ tends to 0.
The characteristic function of 3, X;/n, evaluated at 7, is equal to

s =(1+ 23]

The function 7 taking its values in the complex plane, some care is necessary before using the logarithm,
but since 7 tends to 0 at 0, one can justify the following computation:
t t t t
e(t/n)" = exp (n log(l + —n(—))) = exp (n—n(—) (1+ o(l))) — 1,
n n n n n— oo
and this proves the result.



