Series 12: central limit theorem

Solutions

Exercise 1

Let μ be the law of X. Since X and Y have the same characteristic function, μ is also the law of Y. Since X and Y are assumed independent, their joint law is the product measure $\mu \otimes \mu$. In particular, we have

(1)
$$\mathbb{P}[X=Y] = \int \mathbb{1}_{\{x=y\}} d\mu(x) d\mu(y).$$

We now compute

$$\begin{split} \frac{1}{2T} \int_{-T}^{T} |\varphi(t)|^2 \, dt &= \frac{1}{2T} \int_{-T}^{T} \varphi(t) \overline{\varphi(t)} \, dt \\ &= \frac{1}{2T} \int_{-T}^{T} \int e^{itx} \, d\mu(x) \, \int e^{-ity} \, d\mu(y) \, dt \\ &= \int \frac{1}{2T} \int_{-T}^{T} e^{it(x-y)} \, dt \, d\mu(x) \, d\mu(y), \end{split}$$

by Fubini's theorem. Now,

$$\frac{1}{2T} \int_{-T}^{T} e^{itz} dt = \operatorname{sinc}(Tz),$$

where

$$\operatorname{sinc}(z) = \begin{vmatrix} \sin(z)/z & \text{if } z \neq 0, \\ 1 & \text{if } z = 0. \end{vmatrix}$$

Hence, we get

$$\frac{1}{2T} \int_{-T}^{T} |\varphi(t)|^2 dt = \int \operatorname{sinc}(T(x-y)) d\mu(x) d\mu(y).$$

We check that sinc is a bounded function, and that $sinc(Tz) \to 0$ as $T \to \infty$ if $z \neq 0$, and otherwise sinc(Tz) = 1. By the dominated convergence theorem, we thus get

$$\frac{1}{2T} \int_{-T}^{T} |\varphi(t)|^2 dt \xrightarrow[T \to +\infty]{} \int \mathbb{1}_{\{x=y\}} d\mu(x) d\mu(y),$$

which, when combined with (1), gives the result.

Exercise 2

Substracting the expectation out of each X_i , one can see that it suffices to prove the result for mean zero random variables. We thus assume that $\mathbb{E}X_i = 0 \ \forall i$. Let

$$Y_{m,n} = \frac{X_m}{\alpha_n}, \quad n \ge 1, 1 \le m \le n.$$

Since $S_n/\alpha_n = Y_{1,n} + \ldots + Y_{n,n}$, it suffices to check that the $Y_{m,n}$ satisfy the Lindeberg-Feller conditions. Indeed,

- $\mathbb{E}(Y_{m,n}) = 0 \ \forall m, n.$
- For any n,

$$\sum_{m=1}^{n} \mathbb{E}(Y_{m,n}^2) = \frac{\operatorname{Var}(X_1 + \ldots + X_n)}{\alpha_n^2} = 1.$$

• For $\epsilon > 0$ and $n \ge 1$,

$$\begin{split} \sum_{m=1}^n \mathbb{E}(Y_{m,n}^2 \cdot I_{(Y_{m,n} > \epsilon)}) &\leq \sum_{m=1}^n \mathbb{E}\left(Y_{m,n}^2 \cdot \left(\frac{Y_{m,n}}{\epsilon}\right)^{\delta}\right) = \\ &\frac{1}{\epsilon^{\delta}} \sum_{m=1}^n \mathbb{E}(Y_{m,n}^{2+\delta}) = \frac{1}{\epsilon^{\delta} \alpha_n^{2+\delta}} \sum_{m=1}^n \mathbb{E}(X_m^{2+\delta}), \end{split}$$

so
$$\sum_{m=1}^{n} \mathbb{E}(Y_{m,n}^2 \cdot I_{(Y_{m,n} > \epsilon)}) \to 0$$
 when $n \to \infty$.

Exercise 3

Following the hint, we write

$$\mathbb{E}[S_n^2] \geq \sum_{k=1}^n \mathbb{E}[(S_k^2 + 2S_k(S_n - S_k) + (S_n - S_k)^2) \mathbb{1}_{A_k}]$$

$$\geq \sum_{k=1}^n \mathbb{E}[S_k^2 \mathbb{1}_{A_k}] + 2\mathbb{E}[S_k(S_n - S_k) \mathbb{1}_{A_k}].$$

Concerning the last expectation, note that $S_k \mathbb{1}_{A_k}$ is $\sigma(X_1, \ldots, X_k)$ -measurable, while $(S_n - S_k)$ is $\sigma(S_{k+1}, \ldots, S_n)$ -measurable. These random variables are thus independent, and since $S_n - S_k$ is centred, we get

$$\mathbb{E}[S_k(S_n - S_k) \, \mathbb{1}_{A_k}] = 0.$$

On the other hand, on the event A_k , we have $S_k^2 \ge x^2$, and the events (A_k) are disjoint, thus

$$\mathbb{E}[S_n^2] \geqslant \sum_{k=1}^n \mathbb{E}[S_k^2 \, \mathbb{1}_{A_k}] \geqslant x^2 \sum_{k=1}^n \mathbb{E}[\mathbb{1}_{A_k}] \geqslant x^2 \mathbb{P}\left[\max_{1 \leq k \leq n} |S_k| \geqslant x\right].$$

Exercise 4

Let

$$Y_n = \frac{S_{N_n}}{\sigma \sqrt{a_n}}, \quad Z_n = \frac{S_{a_n}}{\sigma \sqrt{a_n}}.$$

By the central limit theorem, $Z_n \xrightarrow{(L)} N(0, 1)$. We will show that $Y_n - Z_n \to 0$ in probability; we will then be able to conclude that

$$Y_n = Z_n + (Y_n - Z_n) \xrightarrow{\text{(L)}} N(0, 1).$$

Let $\epsilon > 0$ and $\delta < \epsilon^3/8$. We have

$$\begin{split} & \mathbb{P}(|Y_n - Z_n| > \epsilon) = \mathbb{P}\left(\left|\frac{\sum_{i=1}^{N_n} X_i - \sum_{i=1}^{a_n} X_i}{\sum_{i=1}^{a_n} X_i}\right| > \epsilon \sigma \sqrt{a_n}\right) \leq \\ & \mathbb{P}\left(\left|\frac{N_n}{a_n} - 1\right| > \delta\right) + \mathbb{P}\left(N_n \in [a_n(1 - \delta), a_n], \left|\sum_{i=N_n+1}^{a_n} X_i\right| > \epsilon \sigma \sqrt{a_n}\right) + \mathbb{P}\left(N_n \in [a_n, a_n(1 + \delta)], \left|\sum_{i=a_n+1}^{N_n} X_i\right| > \epsilon \sigma \sqrt{a_n}\right) \\ & \leq \mathbb{P}\left(\left|\frac{N_n}{a_n} - 1\right| > \delta\right) + \mathbb{P}\left(\max_{a_n(1 - \delta) \leq j \leq a_n} \left|\sum_{i=j}^{a_n} X_i\right| > \epsilon \sigma \sqrt{a_n}\right) + \mathbb{P}\left(\max_{a_n \leq j \leq a_n(1 + \delta)} \left|\sum_{i=a_n}^{j} X_i\right| > \epsilon \sigma \sqrt{a_n}\right) = \\ & \leq \mathbb{P}\left(\left|\frac{N_n}{a_n} - 1\right| > \delta\right) + 2\mathbb{P}\left(\max_{a_n \leq j \leq a_n(1 + \delta)} \left|\sum_{i=a_n}^{j} X_i\right| > \epsilon \sigma \sqrt{a_n}\right), \end{split}$$

since the X_i are i.i.d. We now use Kolmogorov's inequality:

$$\mathbb{P}\left(\max_{a_n \leq j \leq a_n(1+\delta)} \left| \sum_{i=a_n}^j X_i \right| > \epsilon \sigma \sqrt{a_n} \right) \leq \frac{\operatorname{Var}(X_{a_n}) + \ldots + \operatorname{Var}(X_{\lceil a_n(1+\delta) \rceil})}{\epsilon^2 \sigma^2 a_n} \leq \frac{\lceil \delta a_n \rceil \sigma^2}{\epsilon^2 \sigma^2 a_n} \leq 2 \frac{\delta}{\epsilon^2} < \frac{\epsilon}{4}.$$

Since $N_n/a_n \to 1$ in probability, we can choose n_0 such that $n \ge n_0$ implies $\mathbb{P}\left(\left|\frac{N_n}{a_n} - 1\right| > \delta\right) < \epsilon/2$. For $n \ge n_0$, we thus have $\mathbb{P}(|Y_n - Z_n| > \epsilon) < \frac{\epsilon}{2} + 2\frac{\epsilon}{4} = \epsilon$.