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Exercise 1

Let u be the law of X. Since X and Y have the same characteristic function, u is also the law of Y. Since
X and Y are assumed independent, their joint law is the product measure u ® u. In particular, we have

(1) PIX = V1 = [ L) ) du).

We now compute
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by Fubini’s theorem. Now,

1 ' " dt = sinc(Tz),
27T ),
where
. _ | sin(z)/z ifz# 0,
sinc(@) =1 if z =0.

Hence, we get
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We check that sinc is a bounded function, and that sinc(7z) — 0 as T — oo if z # 0, and otherwise
sinc(Tz) = 1. By the dominated convergence theorem, we thus get

1 T
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which, when combined with (1), gives the result.

Exercise 2
Substracting the expectation out of each X;, one can see that it suffices to prove the result for mean zero
random variables. We thus assume that EX; = 0 Vi. Let

Ym,n:_y n>1,1<m<n.

Since S,/an = Y1, + ... + Yy, it suffices to check that the Y, , satisfy the Lindeberg-Feller conditions.
Indeed,

o E(Yyn) =0Vm,n.
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Exercise 3
Following the hint, we write

EISy] > ) BIS; +25k(S0 =S+ (Sa = S0 La]
k=1

n
> > EIS} 1a]+2E[Sk(Sy - Si) 1a,].
k=1

Concerning the last expectation, note that S;1,, is o(Xjy,..., Xi)-measurable, while (S, — Si) is
(Sk+1,-..,8,)-measurable. These random variables are thus independent, and since S, — Sy is cen-
tred, we get

E[S«(Sn —Sk) 14,1 =0.

On the other hand, on the event Ay, we have S ,% > x2, and the events (A;) are disjoint, thus

1<k<n
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k=1 k=1

Exercise 4
Let

n
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L
By the central limit theorem, Z, (—)—> N(0, 1). We will show that Y,, — Z, — 0 in probability; we will then
be able to conclude that

L
Yo = Zy + (Yo — Z) -5 N(O, 1).

Let e > 0 and 6 < €/8. We have
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since the X; are i.i.d. We now use Kolmogorov’s inequality:
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Since N, /a, — 1 in probability, we can choose ng such that n > ng implies ]P( 2’—: - 1’ > 6) < €/2. For

n > ny, we thus have P(|Y, — Z,| > €) < § + 25 = €.



