Series 11: characteristic functions and central limit theorem

Solutions

Exercise 1

(*i*.)

$$\varphi_{X_n+a_n}(t) = e^{ita_n} \varphi_{X_n}(t) \to e^{ita} \varphi(t),$$

where φ is the characteristic function associated to $\mathcal{N}(0,1)$; the convergence follows from the hypothesis. Now notice that $e^{ita}\varphi(t)$ is the characteristic function associated to the law of X+a, where $X \sim \mathcal{N}(0,1)$, that is, associated to $\mathcal{N}(a,1)$. We thus have $X_n + a_n \xrightarrow{(\mathcal{L})} \mathcal{N}(a,1)$.

(ii.) Since φ_X is continuous and $\varphi_X(0) = 1$, we can choose $t \neq 0$ such that $\varphi_X(t) \neq 0$. Since X_n converges in distribution to some X, we have $\varphi_{X_n}(t) = e^{-\sigma_n^2 t^2/2} \to \varphi_X(t)$. This shows that $\varphi_X(t)$ is real and strictly positive. Thus, we have $\log(e^{-\sigma_n^2 t^2/2}) \to \log(\varphi_X(t))$, and this is only possible if σ_n converges to some finite non-negative value.

Exercise 2

The normal distribution has all finite moments. This implies that φ is infinitely differentiable and, for each $n \ge 0$,

$$\varphi^{(n)}(0) = i^n \mathbb{E}(X^n).$$

Doing infinite Taylor expansion around zero, this gives for every $t \in \mathbb{R}$

$$\varphi(t) = \sum_{n=0}^{\infty} \frac{i^n \mathbb{E}(X^n)}{n!} t^n.$$

By symmetry of the distribution, all moments of odd orders are zero, so the above is equal to $\sum_{n=0}^{\infty} \frac{i^{2n} \mathbb{E}(X^{2n})}{(2n)!} t^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n \mathbb{E}(X^{2n})}{(2n)!} t^{2n}.$ On the other hand, we know that $\varphi(t) = e^{-t^2/2}$, and using the usual exponential series $e^a = \sum_{n=0}^{\infty} \frac{a^n}{n!}$, we have

$$\varphi(t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n (n!)} t^{2n}.$$

We now use unicity of Taylor expansion to get, for every n,

$$\frac{(-1)^n}{(2n)!}\mathbb{E}(X^{2n}) = \frac{(-1)^n}{2^n(n!)}t^{2n}.$$

and the result follows.

Exercise 3

Recall that if $X_1, X_2, ...$ are i.i.d. Poisson random variables of parameter 1, then $S_n = X_1 + ... + X_n$ has a Poisson law with parameter n (this can be proved for instance by an explicit computation or by using characteristic functions). Note also that $\mathbb{E}(S_n) = \text{Var}(S_n) = n$. Hence,

$$e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!} = \mathbb{P}(\text{Poi}(n) \le n) =$$

$$\mathbb{P}(S_{n} \le n) = \mathbb{P}\left(\frac{S_{n} - n}{\sqrt{n}} \le \frac{n - n}{\sqrt{n}}\right) \to \mathbb{P}(\mathcal{N}(0, 1) \le 0) = \frac{1}{2}.$$

Exercise 4

Let us define R_n such that

$$S_n = n + \sqrt{n}R_n$$
.

By the central limit theorem, we know that R_n converges in law to $\mathcal{N}(0, \sigma^2)$ as n tends to infinity. Moreover,

$$\mathbb{P}[\sqrt{S_n} - \sqrt{n} \le x] = \mathbb{P}[S_n \le (x + \sqrt{n})^2]$$

$$= \mathbb{P}\left[R_n \le \frac{(x + \sqrt{n})^2 - n}{\sqrt{n}}\right]$$

$$= \mathbb{P}\left[R_n \le \frac{x^2}{\sqrt{n}} + 2x\right].$$

Since R_n converges in law to $\mathcal{N}(0, \sigma^2)$, we know that $R_n - x^2 / \sqrt{n}$ also converges in law to $\mathcal{N}(0, \sigma^2)$. Thus, letting $N \sim \mathcal{N}(0, \sigma^2)$, the probability above converges to

$$\mathbb{P}[N \leq 2x] = \mathbb{P}[N/2 \leq x].$$

We have thus proved that $\sqrt{S_n} - \sqrt{n}$ converges in law to N/2, which has distribution $\mathcal{N}(0, \sigma^2/4)$.

Exercise 5

Let

$$\sigma_n = \left(\sum_{k=1}^n X_k^2\right)^{-1/2}.$$

By the strong law of large numbers, we have

$$\sigma_n \xrightarrow[n \to \infty]{\text{a.s.}} \sigma := \mathbb{E}[X_1^2]^{1/2}.$$

Let $\delta > 0$, sufficiently small so that $\sigma - \delta > 0$, and let E_n be the event

$$\{|\sigma_n - \sigma| \le \delta\}.$$

By the above observation, we know that $\mathbb{P}[E_n]$ tends to 1 as n tends to infinity. Let us write $S_n = X_1 + \ldots + X_n$. For every $x \in \mathbb{R}$, we compute

$$\mathbb{P}[S_n/\sigma_n \leq x] \leq \mathbb{P}[S_n \leq (\sigma + \delta)x, E_n] + \mathbb{P}[E_n^c],$$

where we write E_n^c for the complementary of E_n . Hence,

$$\limsup_{n\to\infty} \mathbb{P}[S_n/\sigma_n \leqslant x] \leqslant \limsup_{n\to\infty} \mathbb{P}[S_n \leqslant (\sigma+\delta)x, E_n].$$

But

$$\mathbb{P}[S_n \leq (\sigma + \delta)x, E_n] \leq \mathbb{P}[S_n \leq (\sigma + \delta)x] - \mathbb{P}[E_n^c],$$

SO

$$\limsup_{n\to\infty} \mathbb{P}[S_n/\sigma_n \leqslant x] \leqslant \limsup_{n\to\infty} \mathbb{P}[S_n \leqslant (\sigma+\delta)x].$$

By the central limit theorem, the right-hand side is equal to $\mathbb{P}[N \le (\sigma + \delta)x]$, where $N \sim \mathcal{N}(0, \sigma^2)$. We have thus shown

$$\limsup_{n\to\infty} \mathbb{P}[S_n/\sigma_n \leqslant x] \leqslant \mathbb{P}[N \leqslant (\sigma+\delta)x].$$

Since $\delta > 0$ can be taken arbitrarily small, this actually show that

$$\limsup_{n\to\infty} \mathbb{P}[S_n/\sigma_n \leqslant x] \leqslant \mathbb{P}[N \leqslant \sigma x] = \mathbb{P}[N/\sigma \leqslant x].$$

By the same reasoning, we obtain that

$$\liminf_{n\to\infty} \mathbb{P}[S_n/\sigma_n \leqslant x] \geqslant \mathbb{P}[N/\sigma \leqslant x],$$

and thus

$$\lim_{n\to\infty} \mathbb{P}[S_n/\sigma_n \leq x] = \mathbb{P}[N/\sigma \leq x].$$

Since $N/\sigma \sim \mathcal{N}(0, 1)$, this proves the claim.

Exercise 6

(i) Let

$$Z = \limsup_{n \to \infty} \frac{S_n}{\sqrt{n}}.$$

The random variable Z is well-defined (with values in $\mathbb{R} \cup \{\pm \infty\}$) and measurable with respect to $\sigma(X_1, X_2, \ldots)$, with X_1, X_2, \ldots independent random variables. Let k be a positive integer. We have

$$Z = \limsup_{n \to \infty} \frac{S_k + (S_n - S_k)}{\sqrt{n}} = \limsup_{n \to \infty} \frac{S_n - S_k}{\sqrt{n}},$$

so Z is $\sigma(X_{k+1}, X_{k+2}, ...)$ measurable. We have thus verified that Z is measurable with respect to the tail σ -algebra, which by Kolmogorov's 0-1 law, is trivial.

Let M > 0 (finite). By the central limit theorem,

$$\lim_{n\to\infty} \mathbb{P}[S_n/\sqrt{n} \geqslant M] =: c_M > 0.$$

In particular, for every k,

$$\liminf_{k\to\infty} \mathbb{P}\left[\sup_{n\geqslant k} \frac{S_n}{\sqrt{n}} \geqslant M\right] \geqslant c_M > 0.$$

Actually, the liminf above is a true limit since the events in the probability are decreasing, and we have

$$\mathbb{P}[Z \geqslant M] = \mathbb{P}\left[\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} \geqslant M\right] = \lim_{k \to \infty} \mathbb{P}\left[\sup_{n \geqslant k} \frac{S_n}{\sqrt{n}} \geqslant M\right] \geqslant c_M > 0.$$

But since Z is measurable with respect to the tail σ -algebra, we must have $\mathbb{P}[Z \ge M] \in \{0, 1\}$. So $\mathbb{P}[Z \ge M] = 1$, and this for every finite M. So $\mathbb{P}[Z = +\infty] = 1$.

(ii) Let $T_n = S_{n!}$, and $T'_n = T_n - T_{n-1}$. By construction, T'_n depends only on $X_{(n-1)!+1}, \ldots, X_{n!}$, so it is independent of T_{n-1} .

Assume by contradiction that S_n/\sqrt{n} converges in probability to some random variable N. Then it must be that N has law $N(0, \sigma^2)$, with $\sigma = \mathbb{E}[X_1^2]^{1/2} > 0$. T_n being a subsequence of S_n , we also have that $T_n/\sqrt{n!}$ converges in probability to N, and as a consequence,

$$\frac{T_n}{\sqrt{n!}} - \frac{T_{n-1}}{\sqrt{(n-1)!}} \xrightarrow[n \to \infty]{(p)} 0.$$

(Note that we could not do the same reasoning here with convergence in law!) Recall that $T_n = T'_n + T_{n-1}$. Since $T_{n-1}/\sqrt{(n-1)!}$ converges in probability, it must be that T_{n-1}/\sqrt{n} converges to 0 in probability, and thus

(1)
$$\frac{T'_n}{\sqrt{n!}} - \frac{T_{n-1}}{\sqrt{(n-1)!}} \xrightarrow[n \to \infty]{(p)} 0.$$

But $T'_n/\sqrt{n!}$ and $T_{n-1}/\sqrt{(n-1)!}$ are independent, and they converge separately to $\mathcal{N}(0,\sigma^2)$. So they jointly converge (see exercise 6 of series 10) to two independent random variables with common law $\mathcal{N}(0,\sigma^2)$. Hence, the difference converges in law to the difference of these two random variables, which has law $\mathcal{N}(0,2\sigma^2)$. But this contradicts (1)!