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Series 11: characteristic functions and central limit theorem Solutions
Exercise 1
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PX,1a, (1) = "y, (1) — " (t),

where ¢ is the characteristic function associated to (0, 1); the convergence follows from the hypothesis.
Now notice that ¢/™¢(f) is the characteristic function associated to the law of X + a, where X ~ N(0, 1),

that is, associated to N(a, 1). We thus have X, + a, (—LL N(a,1).

(ii.) Since ¢y is continuous and ¢,(0) = 1, we can choose ¢ # 0 such that ¢x(¢) # 0. Since X, converges
in distribution to some X, we have ¢y, (f) = T2 @x(t). This shows that @x(7) is real and strictly
positive. Thus, we have log(e“fﬁ’z/ 2) — log(gpx(t)), and this is only possible if o, converges to some
finite non-negative value.

Exercise 2
The normal distribution has all finite moments. This implies that ¢ is infinitely differentiable and, for
eachn > 0,

©™(0) = "E(X").

Doing infinite Taylor expansion around zero, this gives for every t € R

(o)

'nE X}’l
FOEDIE XD,

|
oy n:

By symmetry of the distribution, all moments of odd orders are zero, so the above is equal to
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. On the other hand, we know that ¢(r) = e/ 2, and using the
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We now use unicity of Taylor expansion to get, for every n,
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and the result follows.

Exercise 3

Recall that if X1, X5, ... are i.i.d. Poisson random variables of parameter 1, then S, = X; + ... + X,, has
a Poisson law with parameter n (this can be proved for instance by an explicit computation or by using
characteristic functions). Note also that E(S,) = Var(S,) = n. Hence,
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Exercise 4
Let us define R, such that
S, =n+ \VnR,.

By the central limit theorem, we know that R,, converges in law to N'(0, %) as n tends to infinity. More-
over,
P[S, < (x+ Vi)'l
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Since R, converges in law to N(0,?), we know that R, — x*/ v/n also converges in law to N(0, o%).
Thus, letting N ~ N(0, o2), the probability above converges to

P[S, - Vn < x]

P (R,

P[N < 2x] = P[N/2 < x].
We have thus proved that /S, — vn converges in law to N/2, which has distribution N(0, a2 /4).

Exercise 5
Let

O =
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By the strong law of large numbers, we have

Op — o 1= E(x3]'2.

n—oo

Let 6 > 0, sufficiently small so that o — ¢ > 0, and let E,, be the event
{lon — ol < 6}

By the above observation, we know that IP[E,] tends to 1 as n tends to infinity. Let us write S, =
X1+ ...+ X,. For every x € R, we compute

P[S,/on < x] < P[S, < (0 +6)x, E,] + P[E,],
where we write EY, for the complementary of E,,. Hence,

limsup P[S /o, < x] < limsupP[S, < (o +0)x, E,;].
n—oo n—oo
But
P[S, < (0 +6)x,E,] <P[S, < (0 +6)x] - P[E;],

SO
limsup P[S /0, < x] < limsup P[S, < (o + 6)x].
n—oo n—oo
By the central limit theorem, the right-hand side is equal to P[N < (o + 6)x], where N ~ N(0, o). We
have thus shown
limsup P[S /0, < x] < P[N < (0 + 9)x].

n—oo

Since 6 > 0 can be taken arbitrarily small, this actually show that

limsup P[S,/0, < x] < P[N < 0x] = P[N/o < x].

n—oo



By the same reasoning, we obtain that

liminf P[S, /0, < x] > P[N/o < x],

n—oo

and thus
lim P[S, /o, < x] = P[N/o < x].
n—00

Since N/o ~ N(0, 1), this proves the claim.
Exercise 6
(i) Let

S
Z = limsup —=.
n—oo n

The random variable Z is well-defined (with values in R U {+co}) and measurable with respect to
o (X1, Xa,...), with X1, X5, ... independent random variables. Let k be a positive integer. We have

T Sk+(Sn_Sk)_- n—Sk
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$0 Z is 0 (Xg+1, Xk+2, - - -) measurable. We have thus verified that Z is measurable with respect to the tail
o-algebra, which by Kolmogorov’s 0-1 law, is trivial.
Let M > 0 (finite). By the central limit theorem,

lim P[S,/ Vn > M] =: cy > 0.
n—oo

In particular, for every £,

S
liminf P [sup —= > M] >cy > 0.
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Actually, the liminf above is a true limit since the events in the probability are decreasing, and we have

P[Z > M] :P[li?_}igps—\/% >M} :kll)n.}oIP[il;IZ f/% >M] >cy > 0.
But since Z is measurable with respect to the tail o-algebra, we must have P[Z > M] € {0,1}. So
P[Z > M] = 1, and this for every finite M. So P[Z = +o0] = 1.
(ii)) Let T, = Sy, and T,, = T,, — T),—1. By construction, T, depends only on X(,—1)1+1, ..., Xy, s0 it is
independent of 7),_;.
Assume by contradiction that S,/ v/n converges in probability to some random variable N. Then it must
be that N has law N(0, 0%), with o= = ]E[X]z]l/2 > 0. T, being a subsequence of S,, we also have that
T,/ Vn! converges in probability to N, and as a consequence,

Tn _ Tn—] (P) 0
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(Note that we could not do the same reasoning here with convergence in law!) Recall that T, = T, +T},—;.
Since T,,—1/ V(n — 1)! converges in probability, it must be that 7,,_; / v/n converges to 0 in probability, and
thus

Tr/l T, (P
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But T’/ Vn! and T,_;/(n — I)! are independent, and they converge separately to N(0,02). So they
jointly converge (see exercise 6 of series 10) to two independent random variables with common law
N(Q, 0'2). Hence, the difference converges in law to the difference of these two random variables, which
has law N(0,20%). But this contradicts (1)!
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