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Series 11: characteristic functions and central limit theorem Solutions

Exercise 1
(i.)

ϕXn+an(t) = eitanϕXn(t)→ eitaϕ(t),

where ϕ is the characteristic function associated toN(0, 1); the convergence follows from the hypothesis.
Now notice that eitaϕ(t) is the characteristic function associated to the law of X + a, where X ∼ N(0, 1),

that is, associated to N(a, 1). We thus have Xn + an
(L)
−−→ N(a, 1).

(ii.) Since ϕX is continuous and ϕx(0) = 1, we can choose t , 0 such that ϕX(t) , 0. Since Xn converges
in distribution to some X, we have ϕXn(t) = e−σ

2
nt2/2 → ϕX(t). This shows that ϕX(t) is real and strictly

positive. Thus, we have log(e−σ
2
nt2/2) → log(ϕX(t)), and this is only possible if σn converges to some

finite non-negative value.

Exercise 2
The normal distribution has all finite moments. This implies that ϕ is infinitely differentiable and, for
each n ≥ 0,

ϕ(n)(0) = inE(Xn).

Doing infinite Taylor expansion around zero, this gives for every t ∈ R

ϕ(t) =

∞∑
n=0

inE(Xn)
n!

tn.

By symmetry of the distribution, all moments of odd orders are zero, so the above is equal to∑∞
n=0

i2nE(X2n)
(2n)! t2n =

∑∞
n=0

(−1)nE(X2n)
(2n)! t2n. On the other hand, we know that ϕ(t) = e−t2/2, and using the

usual exponential series ea =
∑∞

n=0
an

n! , we have

ϕ(t) =

∞∑
n=0

(−1)n

2n(n!)
t2n.

We now use unicity of Taylor expansion to get, for every n,

(−1)n

(2n)!
E(X2n) =

(−1)n

2n(n!)
t2n.

and the result follows.

Exercise 3
Recall that if X1, X2, . . . are i.i.d. Poisson random variables of parameter 1, then S n = X1 + . . . + Xn has
a Poisson law with parameter n (this can be proved for instance by an explicit computation or by using
characteristic functions). Note also that E(S n) = Var(S n) = n. Hence,

e−n
n∑

k=0

nk

k!
= P(Poi(n) ≤ n) =

P(S n ≤ n) = P

(
S n − n
√

n
≤

n − n
√

n

)
→ P(N(0, 1) ≤ 0) =

1
2
.



Exercise 4
Let us define Rn such that

S n = n +
√

nRn.

By the central limit theorem, we know that Rn converges in law to N(0, σ2) as n tends to infinity. More-
over,

P[
√

S n −
√

n 6 x] = P[S n 6 (x +
√

n)2]

= P

[
Rn 6

(x +
√

n)2 − n
√

n

]
= P

[
Rn 6

x2
√

n
+ 2x

]
.

Since Rn converges in law to N(0, σ2), we know that Rn − x2/
√

n also converges in law to N(0, σ2).
Thus, letting N ∼ N(0, σ2), the probability above converges to

P[N 6 2x] = P[N/2 6 x].

We have thus proved that
√

S n −
√

n converges in law to N/2, which has distribution N(0, σ2/4).

Exercise 5
Let

σn =

 n∑
k=1

X2
k

−1/2

.

By the strong law of large numbers, we have

σn
a.s.
−−−−→
n→∞

σ := E[X2
1]1/2.

Let δ > 0, sufficiently small so that σ − δ > 0, and let En be the event

{|σn − σ| 6 δ}.

By the above observation, we know that P[En] tends to 1 as n tends to infinity. Let us write S n =

X1 + . . . + Xn. For every x ∈ R, we compute

P[S n/σn 6 x] 6 P[S n 6 (σ + δ)x, En] +P[Ec
n],

where we write Ec
n for the complementary of En. Hence,

lim sup
n→∞

P[S n/σn 6 x] 6 lim sup
n→∞

P[S n 6 (σ + δ)x, En].

But
P[S n 6 (σ + δ)x, En] 6 P[S n 6 (σ + δ)x] −P[Ec

n],

so
lim sup

n→∞
P[S n/σn 6 x] 6 lim sup

n→∞
P[S n 6 (σ + δ)x].

By the central limit theorem, the right-hand side is equal to P[N 6 (σ + δ)x], where N ∼ N(0, σ2). We
have thus shown

lim sup
n→∞

P[S n/σn 6 x] 6 P[N 6 (σ + δ)x].

Since δ > 0 can be taken arbitrarily small, this actually show that

lim sup
n→∞

P[S n/σn 6 x] 6 P[N 6 σx] = P[N/σ 6 x].



By the same reasoning, we obtain that

lim inf
n→∞

P[S n/σn 6 x] > P[N/σ 6 x],

and thus
lim
n→∞

P[S n/σn 6 x] = P[N/σ 6 x].

Since N/σ ∼ N(0, 1), this proves the claim.

Exercise 6
(i) Let

Z = lim sup
n→∞

S n
√

n
.

The random variable Z is well-defined (with values in R ∪ {±∞}) and measurable with respect to
σ(X1, X2, . . .), with X1, X2, . . . independent random variables. Let k be a positive integer. We have

Z = lim sup
n→∞

S k + (S n − S k)
√

n
= lim sup

n→∞

S n − S k
√

n
,

so Z is σ(Xk+1, Xk+2, . . .) measurable. We have thus verified that Z is measurable with respect to the tail
σ-algebra, which by Kolmogorov’s 0-1 law, is trivial.
Let M > 0 (finite). By the central limit theorem,

lim
n→∞

P[S n/
√

n > M] =: cM > 0.

In particular, for every k,

lim inf
k→∞

P

[
sup
n>k

S n
√

n
> M

]
> cM > 0.

Actually, the liminf above is a true limit since the events in the probability are decreasing, and we have

P[Z > M] = P

[
lim sup

n→∞

S n
√

n
> M

]
= lim

k→∞
P

[
sup
n>k

S n
√

n
> M

]
> cM > 0.

But since Z is measurable with respect to the tail σ-algebra, we must have P[Z > M] ∈ {0, 1}. So
P[Z > M] = 1, and this for every finite M. So P[Z = +∞] = 1.
(ii) Let Tn = S n!, and T ′n = Tn − Tn−1. By construction, T ′n depends only on X(n−1)!+1, . . . , Xn!, so it is
independent of Tn−1.
Assume by contradiction that S n/

√
n converges in probability to some random variable N. Then it must

be that N has law N(0, σ2), with σ = E[X2
1]1/2 > 0. Tn being a subsequence of S n, we also have that

Tn/
√

n! converges in probability to N, and as a consequence,

Tn
√

n!
−

Tn−1
√

(n − 1)!

(p)
−−−−→
n→∞

0.

(Note that we could not do the same reasoning here with convergence in law!) Recall that Tn = T ′n +Tn−1.
Since Tn−1/

√
(n − 1)! converges in probability, it must be that Tn−1/

√
n converges to 0 in probability, and

thus

(1)
T ′n
√

n!
−

Tn−1
√

(n − 1)!

(p)
−−−−→
n→∞

0.

But T ′n/
√

n! and Tn−1/
√

(n − 1)! are independent, and they converge separately to N(0, σ2). So they
jointly converge (see exercise 6 of series 10) to two independent random variables with common law
N(0, σ2). Hence, the difference converges in law to the difference of these two random variables, which
has law N(0, 2σ2). But this contradicts (1)!


