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Exercise 1

(i.) p-x(&) = E(e* %) = E(cos(£ - X)) — iE(sin(£ - X)) = px(&).
(ii.) X and —X have the same law &
Vé e RY, px(é) = p_x(é) &
Vé e RY, ox(é) = ox(é) ©
Vé € RY, px(6) € R. ,
(iii) B(e®7) = B (D €% - Igp) = X5 B(eE%) - PO = i) = T, Ai ¢x,(6).

Exercise 2
Let X1, X», 6 be independent random variables such that:

e X, has characteristic function ¢;
e X, has same law as —X;
e PO=0)=P@=1)=1.

Then, using Exercise 1,

1 1 1 1—
¥x, (&) = §<PX1 &+ 5‘PX2(§) = E‘P(f) + 590(5) = Re ¢p(¢),

ex,1+3(6) = ox, (&) - ox, (&) = lp(&).

Exercise 3
We write u for the law of X.

1t 1 (T -
— e (1) dt —f fe_” Y du(x) dt
2T ), 2T ),

1 T o
— —it(a—x)
2T f[r ¢ at dp(x)

_ sin(7'(a — x))
(1) - [ du

Define fr(x) = % Notice that

Vx, Tll_f)f‘}o Jr(x) = Lig(x),

sup fr(x) < oo.
x€R,T>0

Letting 7" tend to infinity in (1) and using the dominated convergence theorem, we obtain the desired

result since [ 1(g(x) du(x) = P(X = a).

Exercise 4
(i.) Let u be the law of X. Assume that u ((2/1—”2)6) > 0. Then,

Re o()] = ‘ f cos( L) du(x)

Sf | cos(Ax)| d,u(x)+f [ cos(Ax)| du(x).
uz (32)



Now, if x € (ZT”Z)C, then | cos(4x)| < 1, so this sum is strictly less than

f 1d,u(x)+f ldu(x) =1,
42 2y

so [Re ¢()| < 1, s0 (1) # 1.

(ii.)We can choose «, 8 € (-0, d) such that (%”Z) N (%”Z) = {0} (it suffices to take them with a/8 ¢ Q).
Then, ¢(a@) = ¢(B) = 1 implies that u is concentrated on (%—fZ) N (%”Z) = {0}, so u is a point mass at zero.

Exercise 5
We will make use of the following two inequalities:

1 U
P(X] > 2/u) < ;f (1 = ¢x(®) dt,

lpx(t + h) — @x(t)] < Ele"™ —1].

(i.) Suppose that (X;) is tight and fix € > 0. Using tightness, choose M > 0 such that for all i, P(|1X;| >
M) < €/4. Using the continuity of the function /4 le — 1|, choose & > 0 such that |h] < 6, |x] < M =
le"* — 1| < €/2. Also notice that [¢""™ — 1| < 2 for every h € R. Putting things together, when s, ¢ are
such that |s —#{ < ¢ and j € I we get

|E(eith _ eiSXj)’ < E(|eisz| X |€i(t—S)Xj _ 1|) — E(|ei(t—S)Xj _ 1|)
_ E(lei(t—s)Xj —1]- I{IXj\>M}) n E(|ei(t—s)Xj —1 .1{|lesM})
<2P(Xj| > M)+ €/2 =2€/4+€/2 = €.

Now assume that we have the equicontinuity condition of the characteristic functions ¢y, and fix € > 0.
Choose 6 > O such that [s—1] < 6§ = |<pXj(s)—chj(t)| < e for every j € I. notice that, since goX/.(O) =1Vj,
in particular we have |¢x;(s) — 1| < € whenever |s| < 6. Now define M = 2/6; we then have, for all j € 1,

1 25
-5

and since € is arbitrary, the proof is complete.

(ii.) See Theorem 3.2.7 of the textbook (or Theorem 2.2.6 in the second edition).

(iii.) It suffices to prove the result for compact sets of the form [-K, K] with K > 0, because: a.) any
compact set of R is contained in an interval of this form and b.) if a sequence of functions converges
uniformly in a set, it also converges uniformly in any subset of this set. So, from now on, fix K > 0 and
€ > 0, and we want to show that there exists N such that, if n > N, then |py, (x) — ¢,(x)| < € for any
x € [-K,K].

Let u, denote the distribution of X,. By (ii.), the set of distributions {u} U {u, : n € N} is tight. By
part (i.), we can thus choose 6 > 0 such that, whenever |s — 1| < ¢, we have |¢,, (s) — ¢, ()] < €/3 and
lou(s) — @u(0)] < €/3. Now take xo, x1, ..., x; such that xo = —K, x; = K and 0 < x;;1 — x; < 6 for each
i. Finally, choose N such that n > N implies |¢,,(x;) — ¢.(x;)| < €/3 for every i. Now, fix n > N and
x € [-K, K]. There exists i such that x — x; < §; we then have

|y, (X) = 0 (O] < oy, (%) = @, (XD + Iy, (xi) — @u(x)] + lpu(xi) — ()] < 3€/3 = €.



Exercise 6

(i.) X, + Y, converges in distribution to a law u if and only if V1, ¢x,,y,(f) converges to ¢,(f). Notice
that px, .y, (f) = ¢x, () oy, (1) = ¢x (@) ey, () = @x.+v. (1), where px_ .y, is the characteristic function
associated to the law of a sum of a random variable with the law of X, with another random variable
with the law of Y, the two being independent. This concludes the proof.

N
(ii.) Part of the statement is that the function []2, ¢x,(#), equal to Al,im l—[ @x,(t), is well-defined, i.e.
—00 l=1

that the limit exists for all . Indeed, on the one hand we have px, ;. 1x, () = ]_[l].i | ¢x;(1), and on the
other hand the fact that X; ... + X converges almost surely to S, implies that X; +... + Xy = S, SO

(o8]

N
#x,+..3,(1) = s (1) for all 1. This shows that ¢s. (1) = lim ¢x+..exy() = lim ]_1[ ox, () = ]_1[ ox,(0).
i= i=



