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Series 10: characteristic functions Solutions

Exercise 1
(i.) ϕ−X(ξ) = E(eiξ·(−X)) = E(cos(ξ · X)) − iE(sin(ξ · X)) = ϕX(ξ).
(ii.) X and −X have the same law⇔

∀ξ ∈ Rd, ϕX(ξ) = ϕ−X(ξ)⇔
∀ξ ∈ Rd, ϕX(ξ) = ϕX(ξ)⇔
∀ξ ∈ Rd, ϕX(ξ) ∈ R.

(iii.) E(eiξ·Z) = E
(∑κ

i=1 eiξ·Xi · I(θ=i)
)

=
∑κ

i=1 E(eiξ·Xi) · P(θ = i) =
∑κ

i=1 λi ϕXi(ξ).

Exercise 2
Let X1, X2, θ be independent random variables such that:

• X1 has characteristic function ϕ;

• X2 has same law as −X1;

• P(θ = 0) = P(θ = 1) = 1
2 .

Then, using Exercise 1,

ϕXθ(ξ) =
1
2
ϕX1(ξ) +

1
2
ϕX2(ξ) =

1
2
ϕ(ξ) +

1
2
ϕ(ξ) = Re ϕ(ξ),

ϕX1+X2(ξ) = ϕX1(ξ) · ϕX1(ξ) = |ϕ(ξ)|2.

Exercise 3
We write µ for the law of X.

1
2T

∫ T

−T
e−itaϕ(t) dt =

1
2T

∫ T

−T

∫
e−it(a−x) dµ(x) dt

=
1

2T

∫ ∫ T

−T
e−it(a−x) dt dµ(x)

=

∫
sin(T (a − x))

T (a − x)
dµ(x).(1)

Define fT (x) =
sin(T (a−x))

T (a−x) . Notice that

∀x, lim
T→∞

fT (x) = 1{a}(x),

sup
x∈R,T>0

fT (x) < ∞.

Letting T tend to infinity in (1) and using the dominated convergence theorem, we obtain the desired
result since

∫
1{a}(x) dµ(x) = P(X = a).

Exercise 4
(i.) Let µ be the law of X. Assume that µ

((
2π
λ Z

)c)
> 0. Then,

|Re ϕ(λ)| =
∣∣∣∣∣∫ cos(λx) dµ(x)

∣∣∣∣∣ ≤ ∫
2π
λ Z
| cos(λx)| dµ(x) +

∫
( 2π
λ Z)

c
| cos(λx)| dµ(x).



Now, if x ∈
(

2π
λ Z

)c
, then | cos(λx)| < 1, so this sum is strictly less than∫

2π
λ Z

1 dµ(x) +

∫
( 2π
λ Z)

c
1 dµ(x) = 1,

so |Re ϕ(λ)| < 1, so ϕ(λ) , 1.

(ii.)We can choose α, β ∈ (−δ, δ) such that
(

2π
α Z

)
∩

(
2π
β Z

)
= {0} (it suffices to take them with α/β < Q).

Then, ϕ(α) = ϕ(β) = 1 implies that µ is concentrated on
(

2π
α Z

)
∩

(
2π
β Z

)
= {0}, so µ is a point mass at zero.

Exercise 5
We will make use of the following two inequalities:

P(|X| > 2/u) ≤
1
u

∫ u

−u
(1 − ϕX(t)) dt,

|ϕX(t + h) − ϕX(t)| ≤ E|eihX − 1|.

(i.) Suppose that (Xi) is tight and fix ε > 0. Using tightness, choose M > 0 such that for all i,P(|Xi| >

M) < ε/4. Using the continuity of the function h 7→ |eih − 1|, choose δ > 0 such that |h| < δ, |x| < M =⇒

|eihx − 1| < ε/2. Also notice that |eihM − 1| ≤ 2 for every h ∈ R. Putting things together, when s, t are
such that |s − t| < δ and j ∈ I we get∣∣∣E(eitX j − eisX j)

∣∣∣ ≤ E (
|eisX j | · |ei(t−s)X j − 1|

)
= E

(
|ei(t−s)X j − 1|

)
= E

(
|ei(t−s)X j − 1| · I{|X j |>M}

)
+ E

(
|ei(t−s)X j − 1| · I{|X j |≤M}

)
≤ 2P(|X j| > M) + ε/2 = 2ε/4 + ε/2 = ε.

Now assume that we have the equicontinuity condition of the characteristic functions ϕXi and fix ε > 0.
Choose δ > 0 such that |s−t| < δ =⇒ |ϕX j(s)−ϕX j(t)| < ε for every j ∈ I. notice that, since ϕX j(0) = 1 ∀ j,
in particular we have |ϕX j(s) − 1| < ε whenever |s| < δ. Now define M = 2/δ; we then have, for all j ∈ I,

P(X j > M) ≤
1
δ

∫ δ

−δ
|ϕX j(s) − 1|ds ≤

2εδ
δ

= 2ε,

and since ε is arbitrary, the proof is complete.

(ii.) See Theorem 3.2.7 of the textbook (or Theorem 2.2.6 in the second edition).
(iii.) It suffices to prove the result for compact sets of the form [−K,K] with K > 0, because: a.) any
compact set of R is contained in an interval of this form and b.) if a sequence of functions converges
uniformly in a set, it also converges uniformly in any subset of this set. So, from now on, fix K > 0 and
ε > 0, and we want to show that there exists N such that, if n ≥ N, then |ϕXn(x) − ϕµ(x)| < ε for any
x ∈ [−K,K].
Let µn denote the distribution of Xn. By (ii.), the set of distributions {µ} ∪ {µn : n ∈ N} is tight. By
part (i.), we can thus choose δ > 0 such that, whenever |s − t| < δ, we have |ϕµn(s) − ϕµn(t)| < ε/3 and
|ϕµ(s) − ϕµ(t)| < ε/3. Now take x0, x1, . . . , xk such that x0 = −K, xk = K and 0 < xi+1 − xi < δ for each
i. Finally, choose N such that n ≥ N implies |ϕµn(xi) − ϕµ(xi)| < ε/3 for every i. Now, fix n ≥ N and
x ∈ [−K,K]. There exists i such that x − xi < δ; we then have

|ϕµn(x) − ϕµ(x)| ≤ |ϕµn(x) − ϕµn(xi)| + |ϕµn(xi) − ϕµ(xi)| + |ϕµ(xi) − ϕµ(x)| < 3ε/3 = ε.



Exercise 6
(i.) Xn + Yn converges in distribution to a law µ if and only if ∀t, ϕXn+Yn(t) converges to ϕµ(t). Notice
that ϕXn+Yn(t) = ϕXn(t) ϕYn(t) → ϕX∞(t) ϕY∞(t) = ϕX∞+Y∞(t), where ϕX∞+Y∞ is the characteristic function
associated to the law of a sum of a random variable with the law of X∞ with another random variable
with the law of Y∞, the two being independent. This concludes the proof.

(ii.) Part of the statement is that the function
∏∞

i=1 ϕXi(t), equal to lim
N→∞

N∏
i=1

ϕXi(t), is well-defined, i.e.

that the limit exists for all t. Indeed, on the one hand we have ϕX1+...+XN (t) =
∏N

i=1 ϕXi(t), and on the
other hand the fact that X1 . . . + XN converges almost surely to S∞ implies that X1 + . . . + XN ⇒ S∞, so

ϕX1+...+XN (t)→ ϕS∞(t) for all t. This shows that ϕS∞(t) = lim
N→∞

ϕX1+...+XN (t) = lim
N→∞

N∏
i=1

ϕXi(t) =

∞∏
i=1

ϕXi(t).


