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1) The sigma algebra generated by the functions ω → ωt t ≥ 0 is the
smallest sigma algebra such that al the maps ω → ωt are measureable with
respect to it. Equally it is the smallest sigma algebra which contains all the
sets

{ω : ωt ≤ c}

for all t and c. We denote this sigma algebra by sigma algegra G Let G′ be
the collection of sets of the form

A = {ω : ωt1 , ωt2 , · · ·ωtn , · · · ∈ H}

for some sequence ti ≥ 0 and some H in the Borels of RN ,H. Now (Fact
but can be cited) the Borels on RN are generated by the sets of the form

R× R× · · ·R×O × R× R× · · ·

. Thus if we consider H′ to be the collection of subsets of RN having the
property that for each sequence ti ≥ 0, the set

A = {ω : ωt1 , ωt2 , · · ·ωtn , · · · ∈ H}

is a member of G, we find that
1) RN is in H′ as in this case whatever the choice of sequence ti ≥ 0, the

set A is equal to RR+ ,
2) if H ∈ H′, then Hc ∈ H′. Since for any sequence ti ≥ 0, if A = {ω :

ωt1 , ωt2 , · · ·ωtn , · · · ∈ H}is in G, then Ac = {ω : ωt1 , ωt2 , · · ·ωtn , · · · ∈ Hc}is
in G

3) if Hi ∈ H′ i geq1, then ∪iHi ∈ H′: for any sequence ti we have
Ai = {ω : ωt1 , ωt2 , · · ·ωtn , · · · ∈ Hi}is in G, so ∪Ai is in G but

∪Ai = {ω : ωt1 , ωt2 , · · ·ωtn , · · · ∈ ∪Hi}

and so ∪Hi is in H′.

Thus H′ is a sigma field which contains elements R × R × · · ·R × O ×
R × R × · · · for O Borellian on R so it contains H. Thus we can conclude
that G′ ⊂ G.
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For the converse inclusion we start by noting that the above argument
gives that for any sequence (not necessarily increasing) of positive integers
n1, n2, · · · we have for every H ∈ H, the set

{ω ∈ RN : ωn1 , ωn2 · · · ∈ H}

is in H.
We consider G′. Since it contains sets of the form {ωt ∈ O} for O a

Borellian subset of R, to show that G ⊂ G′ it is enough to show that G′ is
a sigma field.

Firstly, the fact that RR+ ∈ G′ follows immediately by choosing H to be
RN and the sequence ti to be arbitrary.
Secondly, again if A ∈ G′, then for H the corresponding set in RN and ti
the given sequence, we have

Ac = {ω : ωt1 , ωt2 , · · ·ωtn , · · · ∈ Hc}

which is evidently in G′ since Hc is in H.
It remains to deal with countable unions. Suppose that Ai, i = 1, 2 · · ·

is a sequence of elements of G′ and suppose that

Ai = {ω : ωti1
, ωti2

, · · ·ωtin
, · · · ∈ Hi}.

Since the countable union of countable subsets is countable, we may
write

∪i ∪j {tij}

as t1, t2, · · · . Let ni
j be such that tij = tni

j
. Then

∪iAi = {ω : ωt1 , ωt2 , · · ·ωn , · · · ∈ H}

where H is equal to the set

{ω ∈ RN : for some i, ωni
1
, ωni

2
· · · ∈ Hi} = ∪iH ′i

for H ′i = {ω : ωni
1
, ωni

2
, · · ·ωni

n
, · · · ∈ Hi}. Thus ∪Ai ∈ G′ and we are done.

2) Use Fatous Lemma on Xn = 1− 1(An) to get

1−E(lim sup
n

1(An)) = E(lim inf
n

Xn) ≤ lim inf
n

E(Xn) = 1− lim sup
n

P (An).

Note that Xn ≥ 0 a.s. and thus Fatous lemma is applicable. Also,

lim sup
n

1(An) = 1(lim sup
n

An)

since ω ∈ lim supnAn if and only if ω belongs to infinitely many An if and
only if lim supn 1(An)(ω) = 1. This proves the first part.
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For second part, set Un to be i.i.d. Uniform [0, 1]. And set An = {Un ≤
0.5}. We know that P (An) = 0.5 for all n ≥ 1. Thus we have that∑

n

P (An) =∞

and hence by Borel-Cantelli Lemma P (lim supnAn) = 1.
3) Set An = {U2n > 2nU2n+1} and Bn = {U2n−1 > (2n − 1)U2n}. We

then have that

P (An) =

∫ 1

0
P (U2n > 2nx)dx =

∫ (2n)−1

0
P (U2n > x)dx =

∫ (2n)−1

0
(1−x)dx =

1

2n
− 1

8n2
.

This implies that
∑

n P (An) = ∞. Since An are independent, we have by
Borel-Cantelli II lemma that

P (lim sup
n

An) = 1

and by Corollary 4.5, we have∑n
i=1 1(Ai)∑n
i=1 P (Ai)

−→ 1 a.s.

as n→∞. Similarly,
P (lim sup

n
Bn) = 1

and ∑n
i=1 1(Bi)∑n
i=1 P (Bi)

−→ 1 a.s.

as n→∞. Since P (Ai) = P (Bi) for each i, we then have that∑n
i=1 1(Bi) + 1(Ai)∑n
i=1 P (Bi) + P (Ai)

−→ 1 a.s.

as n→∞. In other words,∑n
i=1 1(Ui > iUi+1)∑n
i=1 P (Ui > iUi+1)

−→ 1 a.s.

as n→∞.
4) We use the following weak law for triangular arrays (5.5) of Durrett

(1996) with a computation analogous to St. Petersburg Paradox (Example
5.7). We first note that

P (X1 ≥ x) =

∫ ∞
x

y−2dy =
1

x
(1)

for all x ≥ 1.

3



For n ≥ 1, let m(n) = log n + K(n), where K(n)→∞ and is chosen so
that m(n) is an integer. Letting bn = em(n) we define

Xn,k := Xk1(|Xk| ≤ bn) = Xk1(Xk ≤ bn).

We know from (5.5) of Durrett (1996) that if:
(i)

∑n
k=1 P (|Xn,k| > bn)→ 0 and

(ii) b−2n

∑n
k=1EX2

n,k → 0 as n→∞, then

Sn − an
bn

→ 0 (2)

in probability where Sn = X1 + ... + Xn and an =
∑n

k=1EXn,k.
We use the above for our proof. To check (i) holds, first we note from

(1) that

P (X1 ≥ em) =
1

em

for m ≥ 1. Thus we have

n∑
k=1

P (|Xn,k| > bn) =
n∑

k=1

P (Xn,k > bn) = nP (X1 ≥ bn) = nb−1n = e−K(n) −→ 0

as n→∞, since K(n)→∞. This proves that (i) holds.
To check (ii), we observe that

EX2
n,k =

∫ bn

1
dx = bn.

So

b−2n

n∑
k=1

EX2
n,k =

n

bn
= e−K(n)

which converges to zero as n→∞ since K(n)→∞.
The last step is to evaluate an. We know that

E(Xn,k) =

∫ bn

1

dx

x
= m(n)

so that an = nm(n). We have m(n) = log n + K(n), so if we pick

K(n)

log n
→ 0

then
an

n log n
−→ 1 (3)

as n→∞. If we pick

K(n) = sup{k ≤ log logn : log n + k is an integer}
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then for all large n, we must have bn = em(n) ≤ n log n and (2) implies that

|Sn − an|
n log n

≤ |Sn − an|
bn

−→ 0

in probability. From (3) we get that

Sn

n log n
−→ 1

in probability as n→∞.
To show that a.s. convergence does not hold, we note that

P (Xn > 2n log n) =
1

2n log n
.

(The number 2 is not important here. Instead of 2, we can also choose any
number larger than one.) By Borel-Cantelli Lemma, we have that

P (An i.o.) = 1

where An = {Xn > 2n log n}. But if An occurs then

Sn > Xn > 2n log n

so that we have
P (Bn i.o.) = 1

where Bn = Sn
n logn > 2.

5) Let ω ∈ [0, 1]. We note that Xk(ω) ∈ {0, 1} for all k ≥ 1 and for any
i1, ..., in ∈ {0, 1}, we have

{ω : X1(ω) = i1, ..., Xn(ω) = in} = {ω ∈ In,k} (4)

where In,k = [
∑n

k=1 ik2−k,
∑n

k=1 ik2−k + 2−n).
Thus we have

0 ≤ ω −
n∑

k=1

Xk(ω)2−k ≤ 1

2n

for all n ≥ 1. Indeed, for n = 1, we have X1(ω) = [2ω] mod 2. If X1(ω) = 1,
then ω ≥ 0.5 and hence

0 ≤ ω −X1(ω)0.5 = ω − 0.5 ≤ 0.5

If on the other hand, X1(ω) = 0, then ω < 0.5 and again

0 ≤ ω −X1(ω)0.5 = ω < 0.5.

An analogous procedure for general n holds.
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The {Xi}i are discrete random variables. Therefore to show indepen-
dence, it suffices to show that

P (X1 = i1, ..., Xn = in) =
n∏

k=1

P (Xk = ik),

for any i1, ..., in ∈ {0, 1}. First, so that

P (X1 = i1, ..., Xn = in) =
1

2n
.

Summing over all i1, ..., in−1 ∈ {0, 1}, we thus get

P (Xn = in) = 0.5

for in ∈ {0, 1}. This shows that Xn is distributed as a Bernoulli random
variable with parameter 0.5. Thus

P (X1 = i1, ..., Xn = in) = 2−n =

n∏
k=1

P (Xk = ik)

and we have that {Xk}k are independent random variables.
Finally, the random variables U1 and U2 are independent (Corollary 4.5

of Durrett (1996)). To deduce that U1 is uniformly distributed in [0, 1], one
way to proceed is as follows. Get

P (U1 ≤
n∑

k=1

ik2−n) =
n∑

k=1

ik2−k.

And using right continuity get that

P (U1 ≤ t) = t

for all t.
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