Solutions to Practice Test

November 8, 2013

1) The sigma algebra generated by the functions w — wy ¢t > 0 is the
smallest sigma algebra such that al the maps w — w; are measureable with
respect to it. Equally it is the smallest sigma algebra which contains all the
sets

{w:w < ¢}

for all ¢t and c. We denote this sigma algebra by sigma algegra G Let G’ be
the collection of sets of the form

A = {w:wy, Wiy, wp, o € HY

for some sequence t; > 0 and some H in the Borels of RY, H. Now (Fact
but can be cited) the Borels on R are generated by the sets of the form

RxRx -+ RXxOXxRxRx---

. Thus if we consider H' to be the collection of subsets of RY having the
property that for each sequence t; > 0, the set

A = {w:wy,wpy, wy,, - € H}

is a member of G, we find that

1) RY is in H’ as in this case whatever the choice of sequence t; > 0, the
set A is equal to RR+,

2)if H € H', then H® € H'. Since for any sequence t; > 0,if A = {w:
Wy, Wiy, - Wy, , -+ € H}sin G, then A° = {w:wy,why, - -wy,, -+ € H}s
ing

3) if H; € H' i geql, then U;H; € H': for any sequence t; we have
Ai = {w:wy,wiy, - wy,, - € Hi}is in G, so U4, is in G but

UA; = {w:wtl,wtz,--~wtn,-~- S UHl}

and so UH; is in H'.

Thus H’ is a sigma field which contains elements R x R x ---R x O x
R xR x --- for O Borellian on R so it contains H. Thus we can conclude

that ¢’ C G.



For the converse inclusion we start by noting that the above argument
gives that for any sequence (not necessarily increasing) of positive integers
ni,na, -+ we have for every H € H, the set

{weRY 1wy, wp, - € H}

is in H.

We consider G'. Since it contains sets of the form {w; € O} for O a
Borellian subset of R, to show that G C G’ it is enough to show that G’ is
a sigma field.

Firstly, the fact that R+ € G’ follows immediately by choosing H to be
RY and the sequence t; to be arbitrary.

Secondly, again if A € G', then for H the corresponding set in RY and t;
the given sequence, we have

A = {w:wy, Wiy, wy,, - € HEY}
which is evidently in G’ since H¢ is in H.
It remains to deal with countable unions. Suppose that A;, i =1,2---
is a sequence of elements of G’ and suppose that
A = {w:wti,wté,-"wt%f'- € H;}.

Since the countable union of countable subsets is countable, we may

write ‘
Us Uj {tz}
as ty,to, - -. Let n; be such that t} = t,:. Then
J
Uid; = {w:wy,wy, w,, - € H}

where H is equal to the set
{we RN : for some by Wi, Wy -+ € Hi} = U; H

for Hi = {w:wyi,wys, -+ wpi, - € Hi}. Thus UA; € G' and we are done.
2) Use Fatous Lemma on X, =1 — 1(A,) to get

1 — E(limsup 1(4,)) = E(liminf X,,) < liminf F(X,,) =1 — limsup P(4,).

n n

Note that X,, > 0 a.s. and thus Fatous lemma, is applicable. Also,

limsup 1(A4,,) = 1(limsup A4,,)

n n

since w € limsup,, A, if and only if w belongs to infinitely many A, if and
only if limsup,, 1(A,,)(w) = 1. This proves the first part.



For second part, set Uy, to be i.i.d. Uniform [0,1]. And set A, = {U, <
0.5}. We know that P(A,) = 0.5 for all n > 1. Thus we have that

D P(Ay) = o0

and hence by Borel-Cantelli Lemma P(limsup,, A,) = 1.
3) Set A, = {Ugn > 2nU2n+1} and B, = {UQn—l > (2n — l)Ugn}. We
then have that

1 (2n)~ 1! (2n)~?! 1
P(A,) = /0 P(Usp, > 2nzx)dx :/0 P(Usp, > x)dx = /0 (1—x)dx

This implies that ) P(A,) = oco. Since A,, are independent, we have by
Borel-Cantelli II lemma that

P(limsup 4,) =1
n

and by Corollary 4.5, we have

> i 1(A)

==————- —1 as.
> ie P(A)

as n — oo. Similarly,
P(limsup B,,) =1
n

and

L 1(B;
721:1 (Bi) — 1 a.s.

i1 P(Bi)

as n — oo. Since P(A;) = P(B;) for each i, we then have that

S 1(Bs) + 1(A)
> i1 P(Bi) + P(4;)

— 1 a.s.

as n — oo. In other words,

Z?:l ]l(Ui > Z'Ui+1)
>y P(Ui > iUiya)

— 1 a.s.

as n — 0.

4) We use the following weak law for triangular arrays (5.5) of Durrett
(1996) with a computation analogous to St. Petersburg Paradox (Example
5.7). We first note that

o0

Piza)= [ w7y (1)

xT

for all x > 1.
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For n > 1, let m(n) = logn + K(n), where K(n) — oo and is chosen so
that m(n) is an integer. Letting b, = ™™ we define

X = Xp1(| Xk| < bn) = Xp1(Xy < by).

We know from (5.5) of Durrett (1996) that if:
(i) > =1 P(1Xp k| > bn) — 0 and
(i) b,? Y k=g EX ) — 0 as n — oo, then

Sy — an
bn

in probability where S, = X1 + ... + X,, and a,, = Y ;| EXp .
We use the above for our proof. To check (i) holds, first we note from
(1) that

-0 (2)

1
P(Xl > 6m> = —

em
for m > 1. Thus we have

n

> P(IXnpl > by) =Y P(Xpp > by) =nP(X1 > by) =nb,t = e KM — 0
k=1 k=1

as n — 00, since K (n) — co. This proves that (i) holds.
To check (ii), we observe that

bTL
EX?, = /1 dz = by,.

So .
b2 ;EXEL’,C - % — e K

which converges to zero as n — oo since K (n) — oo.
The last step is to evaluate a,. We know that

bn qx

P(Xox) = [ 5 = mn)

so that a,, = nm(n). We have m(n) = logn + K(n), so if we pick

K(n)
logn

then
(79)

—1 (3)

nlogn

as n — oo. If we pick

K(n) = sup{k <loglogn :logn + k is an integer}



then for all large n, we must have b, = ™™ < nlogn and (2) implies that

|Sh — an < [Sn — an 0

nlogn — by,
in probability. From (3) we get that

Sn
nlogn

in probability as n — oo.
To show that a.s. convergence does not hold, we note that

1
2nlogn’

P(X, >2nlogn) =

(The number 2 is not important here. Instead of 2, we can also choose any
number larger than one.) By Borel-Cantelli Lemma, we have that

P(A, i0)=1
where A,, = {X,, > 2nlogn}. But if A,, occurs then
Sn > X, > 2nlogn

so that we have
P(B, i.0.)=1
where B,, = nl%’n > 2.

5) Let w € [0,1]. We note that X;(w) € {0,1} for all £ > 1 and for any
i1, ..., i € {0,1}, we have

{w: Xi(w) =1i1,..., Xp(w) =in} ={w € I 1} (4)

where I, = [Yp_; ik27F, S0 ip27F +277).
Thus we have

n
1
0<w—) Xi(w)2 ’fgfn
k=1

for all n > 1. Indeed, for n = 1, we have X;(w) = [2w] mod 2. If X;(w) =1,
then w > 0.5 and hence

0<w—-X;(w)05b=w—-05<0.5
If on the other hand, X;(w) = 0, then w < 0.5 and again
0<w-—X;(w)0.5=w<0.5.

An analogous procedure for general n holds.



The {X;}; are discrete random variables. Therefore to show indepen-
dence, it suffices to show that

n
P(Xy =i, Xp = in) = [[ P(Xx = i),
k=1

for any i1, ...,4, € {0,1}. First, so that

. . 1
P(X| =i1,... Xy =ip) = =

n’
Summing over all iy, ...,4,—1 € {0,1}, we thus get
P(X, = in) = 0.5

for i, € {0,1}. This shows that X, is distributed as a Bernoulli random
variable with parameter 0.5. Thus

P(X)=i1,., Xp =ip) =2 "—HP Xp = ip)

and we have that {X}}; are independent random variables.

Finally, the random variables U; and Us are independent (Corollary 4.5
of Durrett (1996)). To deduce that U; is uniformly distributed in [0, 1], one
way to proceed is as follows. Get

n n
P(Uy <> g2 ") =) a2
k=1 k=1
And using right continuity get that
P(U, <t)=t

for all ¢.



