EXAMEN PROPEDEUTIQUE DE PROBABILITES AVANCEES

Probabilités avancées 15 Juin 2012

Length of Exam: 3h (from 15h to 18h)

Allowed: Nothing.		
No calculating machines are permitted Veuillez svp. commencer chaque exercice sur une nouvelle feuille.		
Please write clearly your name		
Name:	First name:	
Département :		

Exercice	Points
1	
2	
3	
4	
5	
Total:	

1a) Let P and Q be two probabilities on the Borels of \mathbb{R}^2 satisfying $\forall x, y \in \mathbb{R}$,

$$P((-\infty, x] \times (-\infty, y]) = Q((-\infty, x] \times (-\infty, y]),$$

Dies it follow that the two probabilities sont are the same?.

- b) Give, with justification, an example of an algebra that is not a sigma algebra.
- c) For Q, P two probabilities on (Ω, \mathcal{F}) so that for each $A \in \mathcal{F}$, $Q(A) = \int_A V dP$ where V is positive and integrable (with respect to P. Show that if X_n converge in probability to X on (Ω, \mathcal{F}, P) , then they also do so for (Ω, \mathcal{F}, Q) .
- 2) Give a definition of the convergence in distribution, then add two equivalent conditions. Let X_1, X_2, \cdots be i.i.d. random variables. having fonction characteristic function ϕ that satisfies

$$\phi(t) \sim 1 - \sqrt{|t|}$$

as $t \to 0$. Show carefully that

$$\frac{X_1 + X_2 + \cdots X_n}{n^2} \xrightarrow{D} W$$

(as n becomes large) for some variabe W.

Use this to deduce two properties of the limit distribution W ((with justification).

3) Let X_1, X_2, \cdots be i.i.d. random variables which take integer values :

$$P(X_1 = (-1)^m m) = \frac{C}{m^2 log(m)}$$

where $C = \sum_{m\geq 1} \frac{1}{m^2 m \log(m)}$. Does $E[X_1]$, exist? Show that there is $\mu \in (-\infty, \infty)$ tel que

$$\frac{X_1 + X_2 + \cdots X_n}{n} \stackrel{pr}{\to} \mu$$

Does $\liminf_{n\to\infty} \frac{X_1+X_2+\cdots X_n}{n} = \mu$? Does the 'event $X_n = n$ happen for infinitely many n?

4)Show carefully that the sigma algòre generated by the Lipschitzien functions on \mathbb{R}^2 is the same as the Borellien subsets of \mathbb{R}^2 .

For X_n, Y_n the independant r.v.s with $X_n \sim U(0, n^2)$ and $Y_n \sim \mathcal{E} xp(\frac{1}{n})$, does there exist infinitely many n with $Y_n > X_n$? Does $\frac{X_n}{n^2}$ converge in probability to $\frac{1}{2}$?

- 5) Give an example of a sequence of random variables which converges in L_1 not a.s..
- b) The function positive, integrable sur \mathbb{R}_+ , f satisfies

$$\forall t \int_0^\infty \cos(tx) f(x) dx = e^{-t^2}.$$

What is $\int_0^1 f(x)dx$.