Series 3: random variables and expectation

Exercise 1

Let $C = \{A_1, A_2, \dots, A_{\kappa}\}$ be a partition of $\Omega = \bigcup_{i=1}^{\kappa} A_i$. Assume that $Y : \Omega \to \mathbb{R}$ is $\sigma(C)$ -measurable, i.e. $Y^{-1}(E) \in \sigma(C)$, $\forall E \in \mathcal{B}(\mathbb{R})$. Show that Y is constant on A_i for any $i \in \{1, 2, \dots, \kappa\}$.

Exercise 2

Let X be a real random variable on (Ω, \mathcal{F}) , and $\sigma(X)$ be the σ -algebra generated by X, that is,

$$\sigma(X) = \left\{ X^{-1}(E) : E \in \mathcal{B}(\mathbb{R}) \right\}.$$

- (a) Show that if $Y = f \circ X$, where $f : \mathbb{R} \to \mathbb{R}$ is measurable, then Y is $\sigma(X)$ -measurable, i.e. $Y^{-1}(E) \in \sigma(X)$, $\forall E \in \mathcal{B}(\mathbb{R})$.
- (b) Show that if Y is $\sigma(X)$ -measurable, then there exists a measurable function $f: \mathbb{R} \to \mathbb{R}$ such that $Y = f \circ X$. (Hint: assume first that Y is a simple function. For the general case, use the fact that Y is the pointwise limit of a sequence of simple functions.)

Exercise 3

With any random variable X with values in \mathbb{R}^d , we associate its cumulative distribution function F_X : $\mathbb{R}^d \to [0,1]$ defined by

$$F_X(x) = \mathbb{P}[X \leq x] \quad (= \mathbb{P}[\forall i \in \{1, \dots d\}, X_i \leq x_i]).$$

Show that two random variables with values in \mathbb{R}^d have the same cumulative distribution function if and only if they have the same law.

Exercise 4

Let *X* be a real random variable. Show that $\mathbb{E}[X^2] = (\mathbb{E}[X])^2 < +\infty$ if and only if *X* is constant almost surely, i.e. there exists a constant $c \in \mathbb{R}$ such that $\mathbb{P}[X = c] = 1$.

Exercise 5

Let *X* be an integrable real random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(a) Show that if $A_1, A_2, A_3, ...$ is a sequence of measurable subsets of Ω such that for all $n, A_n \subseteq A_{n+1}$, then

$$\lim_{n\to\infty}\int_{A_n}|X|\,d\mathbb{P}\ =\ \int_{\cup_{n=1}^\infty A_n}|X|\,d\mathbb{P}$$

(b) Show that there exists a sequence of random variables $(X_n)_{n\geqslant 1}$ such that for all n, $|X_n|\leqslant \log(n)$, and moreover, $\lim_{n\to +\infty}\mathbb{E}[X_n]=\mathbb{E}[X]$.

Exercise 6

Let μ be a measure on the set E, and $f_n: E \to \mathbb{R}_+$ be a sequence of positive measurable functions that converge μ -almost everywhere to a function f. We assume that $\int f_n d\mu \xrightarrow[n \to +\infty]{} \int f d\mu$. Is it true that $\int |f_n - f| d\mu \xrightarrow[n \to +\infty]{} 0$?