Series 2: random variables

Exercise 1

Let *X* and *Y* be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, and $A \in \mathcal{F}$. Show that if we define $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then *Z* is also a random variable.

Exercise 2

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Show that $E = \{\omega \in \Omega : \mathbb{P}(\{\omega\}) > 0\}$ is a countable subset of Ω . Using this result, show that a cumulative distribution function has at most countably many discontinuities.

Exercise 3

Show that $X = (X_1, X_2, ..., X_n)$ is a random variable with values in \mathbb{R}^n if and only if for any $i \in \{1, ..., n\}$, X_i is a random variable.

Exercise 4

(1) Consider \mathbb{R}/\mathbb{Q} the set of equivalence classes of the real numbers modulo the rational numbers (in other words, two real numbers are identified if their difference is rational). For each $a \in \mathbb{R}/\mathbb{Q}$, we choose a representative of the class $x_a \in [0, 1]$. Let

$$A = \{x_a, a \in \mathbb{R}/\mathbb{Q}\}.$$

Show that *A* is not Borel measurable (i.e. $A \notin \mathcal{B}(\mathbb{R})$).

(2) Let $(X_{\alpha})_{\alpha \in I}$ be a collection of real random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let

$$X = \sup_{\alpha \in I} X_{\alpha}.$$

Is *X* always a random variable?

Exercise 5

Let (Ω, \mathcal{F}, P) be a probability space. Show that if $A_1, A_2, \dots, A_n \in \mathcal{F}$ then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} P(\bigcap_{i=1}^{n} A_{i}).$$