Series 10: characteristic functions

Exercise 1

Let X be a random variable with values in \mathbb{R}^d , and φ be its characteristic function.

- (i.) Show that $\overline{\varphi}$ is the characteristic function of -X.
- (ii.) Show that $\forall \xi \in \mathbb{R}^d$, $\varphi(\xi) \in \mathbb{R}$ if and only if X and -X have the same distribution.
- (iii.) Let $X_1, X_2, \dots, X_{\kappa}$ and θ be independent random variables. Assume that

$$P[\theta = j] = \lambda_j$$
 for $j = 1, 2, ..., \kappa$, where $\sum_{i=1}^{\kappa} \lambda_j = 1$.

Show that the characteristic function φ_Z of $Z = X_\theta$ is

$$\varphi_Z = \lambda_1 \varphi_{X_1} + \lambda_2 \varphi_{X_2} + \ldots + \lambda_{\kappa} \varphi_{X_{\kappa}}.$$

Exercise 2

Show that if φ is the characteristic function of a real random variable, then $\text{Re}(\varphi)$ and $|\varphi|^2$ are also characteristic functions.

Exercise 3

Let X be a real random variable, and φ its characteristic function. Show that for every $a \in \mathbb{R}$,

$$\mathbb{P}(X=a) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt.$$

Exercise 4

- (i.) Let φ be the characteristic function of the real random variable X. Show that if there exists $\lambda \neq 0$ such that $\varphi(\lambda) = 1$, then a.s., X takes values in the set $\frac{2\pi}{\lambda}\mathbb{Z}$.
- (ii.) Show that if there exists $\delta > 0$ such that $\varphi(t) = 1$ for every $t \in (-\delta, \delta)$, then actually $\varphi(t) = 1$ for every $t \in \mathbb{R}$. What is the law of X?

Exercise 5

Let $(X_i)_{i \in I}$ be a family of real random variables. (i.) Show that (X_i) is tight if and only if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } |s - t| < \delta \implies \forall i \in I, |\varphi_{X_i}(s) - \varphi_{X_i}(t)| < \epsilon.$$

- (ii.) We now assume $I = \mathbb{N}$, and write μ_n for the law of X_n . Show that if $\mu_n \to \mu$ weakly, then the set of distributions $\{\mu\} \cup \{\mu_n : n \in \mathbb{N}\}$ is tight.
- (iii.) If $I = \mathbb{N}$ and there exists μ such that $X_n \to \mu$ in distribution, show that $\varphi_{X_n} \to \varphi$ uniformly over every compact of \mathbb{R} .

Exercise 6

- (i.) Show that if $X_n \to X_\infty$, $Y_n \to Y_\infty$ in distribution, and, for all $n \in \mathbb{N} \cup \{\infty\}$, X_n is independent of Y_n , then $X_n + Y_n \to X_\infty + Y_\infty$ in distribution (all random variables taking real values).
- (ii.) Show that if X_1, X_2, \ldots are independent and $\sum_{i=1}^{\infty} X_i = S_{\infty}$ almost surely, then $\varphi_{S_{\infty}} = \prod_{i=1}^{\infty} \varphi_{X_i}$.