Series 1: probability spaces

Exercise 1

Let $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$ be a random variable. Recall the definition of the distribution of X, and show that it is indeed a probability measure.

Exercise 2

Let $\Omega = \{1, 2, 3, 4\}$. Find two σ -algebras \mathcal{F}_1 and \mathcal{F}_2 of Ω such that the union $\mathcal{F}_1 \cup \mathcal{F}_2$ is not a σ -algebra.

Exercise 3

Let \mathcal{F} be the collection of all subsets of $\{1, 2, 3, 4\}$. Give an example of two probability measures $\mu \neq \nu$ on \mathcal{F} which agree on a collection of sets C such that $\sigma(C) = \mathcal{F}$.

Exercise 4

A σ -algebra \mathcal{F} is said to be countably generated if there exists a countable collection $C \subseteq \mathcal{F}$ such that $\sigma(C) = \mathcal{F}$.

- (a) Show that $\mathcal{B}(\mathbb{R})$ is countably generated.
- (b) Show that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

Exercise 5

Let $\Omega = \mathbb{R}$, and let \mathcal{F} be the collection of all subsets of \mathbb{R} such that either A or A^c is countable. We define $\mathbb{P} : \mathcal{F} \to [0,1]$ such that $\mathbb{P}(A) = 0$ if A is countable, and $\mathbb{P}(A) = 1$ otherwise. Show that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

Exercise 6

We say that $A \subseteq \mathbb{N}$ has asymptotic density θ if

$$\lim_{n\to\infty}\frac{\#(A\cap\{1,\ldots,n\})}{n}=\theta(A).$$

Let \mathcal{A} be the collection of subsets of \mathbb{N} which have an asymptotic density.

- (a) Give an example of a subset of \mathbb{N} which does not belong to \mathcal{A} .
- (b) Show that \mathcal{A} is not a σ -algebra.