
Stochastic Simulation
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Project - 5
Submission deadline: 16 January 2025

Unbiased MCMC using coupling

1 Introduction and background
Let X be a separable metric space (e.g. X ⊂ Rd) with Borel σ-algebra B(X), and let µ, µ0

be two probability measures on (X,B(X)). Markov Chain Monte Carlo (MCMC) algorithms
produce samples that are asymptotically distributed according to the target measure µ, by
generating an ergodic Markov Chain {Xn}n ∼ Markov(µ0, P ) started at X0 ∼ µ0 and having
µ as invariant measure. If we consider now a given µ-integrable function h : X → R, its
expected value with respect to the target measure µ

Eµ[h] =

∫
X
h(x)µ(dx) (1)

can be estimated by the ergodic estimator

ĥN =
1

N

N∑
n=1

h(Xn).

Such estimator is however biased since the chain is not started at stationarity (µ0 ̸= µ),
in general, and the states Xn are only asymptotically distributed according to the target
measure µ. It is customary to reduce this bias by discarding the first few, say b, states of the
chain (so-called burn-in period), thus obtaining the estimator

ĥN,b =
1

N − b+ 1

N∑
n=b

h(Xn).

In this project we will introduce and implement an alternative method for generating unbiased
MCMC estimators for Eµ[h] using samples obtained from coupled Markov chains. Although
this project is sufficiently self-contained so that it can be completed without relying on external
references, we invite the student to review also the material in [2], which first proposed this
idea.

1.1 Constructing unbiased MCMC estimators
Let us introduce the product space of X with itself, denoted X2 = X×X, with associated Borel
σ-algebra B(X2). The unbiased estimator for Eµ[h] proposed in [2] is based on a coupled pair
of Markov chains {Xn} ∼ Markov(µ0, P ) and {Y n} ∼ Markov(µ0, P ), both started from
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µ0, and evolved according to the same Markov transition kernel P . To that end, suppose
that one can construct a joint Markov transition kernel P : X2 × B(X2) → [0, 1] such that
P ((u, v), A × X) = P (u,A) and P ((u, v),X × A) = P (v,A), ∀u, v ∈ X, A ∈ B(X), i.e., a
Markov transition kernel for which each marginal chain, is a Markov chain generated by P ,
and consider the following algorithm that generates the coupled chains:

Algorithm 1 Coupled-chain
1: procedure Coupled-chain-MCMC(µ0, P )
2: Sample X0, Y 0 ∼ µ0 and X1 ∼ P (X0, ·).
3: for n ≥ 1 do
4: if Xn ̸= Y n−1 then
5: generate (Xn+1, Y n) ∼ P ((Xn, Y n−1), ·).
6: else
7: generate Xn+1 ∼ P (Xn, ·) and set Y n = Xn+1

8: end if
9: end for

10: end procedure

It is clear from this algorithm that, after the first meeting time τ := inf{n ≥ 1 : Xn =
Y n−1}, the two chains will evolve together, i.e. Xn+1 = Y n, ∀n ≥ τ . It is also clear from the
construction that each marginal chain {Xn}, {Y n} is a Markov chain Markov(µ0, P ) with
invariant measure µ, so both Xn and Y n are asymptotically distributed as µ. A practical
way to construct a coupling joint kernel P is described in the next section. The idea behind
the unbiased estimator of [2] is to rewrite Eµ[h] using a telescoping sum argument inspired
by [1] in the following way: for any fixed k ≥ 0

Eµ[h] = E[h(Xk)] +

∞∑
n=k+1

E[h(Xn)]− E[h(Xn−1)] (2)

= E[h(Xk)] +

∞∑
n=k+1

E[h(Xn)]− E[h(Y n−1)] (3)

= E
[
h(Xk) +

τ−1∑
n=k+1

(
h(Xn)− h(Y n−1)

)
︸ ︷︷ ︸

Ĥk

]
, (4)

which shows that the quantity Ĥk is an unbiased estimator of Eµ[h]. Since k can be taken
arbitrarily, we can further construct a time-average estimator Ĥb:N = 1

N−b+1

∑N
k=b Ĥk for

fixed integers 0 < b < N , which can be equivalently written as

Ĥb:N =
1

N − b+ 1

N∑
n=b

h(Xn) +

τ−1∑
n=b+1

min

{
1,

n− b

N − b+ 1

}
[h(Xn)− h(Y n)] . (5)

The first term in the sum can be understood as a standard (biased) MCMC estimator ĥN,b

with burn-in period b, while the second term can be understood as a bias correction. Finally,
for fixed values of N, b,R, one can generate R independent realizations of Ĥ(r)

b:N , r = 1, . . . , R,
to estimate the variance of the estimator Ĥb:N and produce suitable confidence intervals.
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In [2], the authors show that under the assumptions that

1. E[h(Xn)]
n→∞−−−→ Eµ[h] and E[|h(Xn)|2+ϵ] ≤ D, ∀n > 0, for some ϵ,D > 0,

2. the meeting time τ satisfies P(τ ≥ n) ≤ Cδn, for some C < +∞, δ ∈ (0, 1),

the estimator Ĥb,N is indeed unbiased, with finite variance and finite expected computing
time.

1.2 Generating coupled chains
We start by giving the definition of maximal coupling. Given two probability measures π, ρ
on (X,B(X)), we recall that the Total Variation (TV) distance between π and ρ is given by
dTV(π, ρ) = 2 supA∈B(X) |π(A)− ρ(A)|. We say that a probability measure γ on (X2,B(X2)) is
a coupling between µ, ρ if (V,W ) ∼ γ implies V ∼ π and W ∼ ρ. It can be shown that

dTV(π, ρ) ≤ 2Pγ(V ̸= W ), (V,W ) ∼ γ. (6)

We say that such a coupling is maximal if equation (6) holds with equality.
For simplicity, set now X = Rd and assume that the measures π and ρ have Lebesgue

densities p, r : X → R+, respectively. Algorithm 2 presents a procedure to generate samples
from a maximal coupling between π and ρ.

Algorithm 2 Maximal coupling by acceptance-rejection
1: procedure Maximal-Coupling(p, r)
2: Generate V ∼ p and U ∼ U([0, 1]).
3: if U ≤ r(V )/p(V ) then
4: Set W = V and return (V,W )
5: else
6: Generate W ∼ r and U ∼ U([0, 1]) until r(W )U > p(W ).
7: Return (V,W )
8: end if
9: end procedure

This maximal coupling can be applied in the context of Metropolis Hastings MCMC by
coupling the proposal states. Suppose we want to generate coupled chains {Xn}, {Y n} ∼
Markov(µ0, P ) with invariant measure µ, as in Algorithm 1, using a Metropolis Hastings
algorithm with proposal kernel Q : X×B(X) → [0, 1]. Then, at each step n we can propose a
(joint) state (V,W ) from the maximal coupling between Q(Xn, ·) and Q(Y n−1, ·) as described
in Algorithm 2, and accept or reject V and W separately using the standard Metropolis-
Hastings acceptance criterion for the two chains {Xn} and {Y n}, however using the same
uniform random number.

2 Goals of this project
1. Prove equation (6). Then, show that Algorithm 2 produces indeed a maximal coupling

of p and r. (Recall that the TV-distance between two probability measures π,ρ with
(Lebesgue) densities p and r, respectively, is dTV(π, ρ) =

∫
X |p(x)− r(x)|dx)
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2. Given some fixed N , obtain an expression for the total expected cost (in terms of calls
to P ) of estimating Eµ[h]. You may assume that the computational cost of sampling
from P is twice that of P . Hint: See [2].

3. Consider the probability measure N (4, 1). Let pµ be the µ-invariant Markov transition
kernel induced by a Random walk Metropolis proposal with variance σ2

RWM = 1, and
let µ0 = N (10, 1). For different values of b,N compute the expected value of h(u) =
11{u>3} using (a) the standard estimator ĥN,b and (b) the time-averaged estimator Ĥb:N

discussed above. Compare your results in terms of cost and accuracy, and in terms of
Var[Hb:N] vs V∞, where V∞ is the asymptotic variance of the standard MCMC estimator.
Present your experimental setup in as much detail as possible.

4. Repeat the previous point with µ = 1
2N (−4, 1)+1

2N (4, 1) and the same hyper-parameters.

5. Propose an adaptive Monte Carlo algorithm to estimate Eµ[h] by the estimator Ĥb,N

with prescribed accuracy and confidence level. Test your adaptive algorithm on the
problems of points 3 and 4 for which the exact value Eµ[h] is known (or can be easily
computed) and assess the robustness of your algorithm.

6. Let us consider the Ising model on a 2D uniform square-lattice of dimension m × m,
with atoms placed at each vertex. The atoms can have an upward (+1) or a downward
(−1) pointing spin. The spin of the atom at position (i, j) in the lattice is denoted
with xij , 1 ≤ i, j ≤ m, so that xij ∈ {−1,+1}. A specific system configuration is hence
described by x = (xij) ∈ {−1,+1}m×m, containing the spin of each of the m2 atoms.
The energy of a given system state is given by

H(x) = −
m∑

i,j=1

1

2
Jxij(xi−1,j + xi+1,j + xi,j−1 + xi,j+1), (7)

where J is a magnetic coupling constant. To account for boundary effects, we set
periodic boundary conditions, i.e., using in (7) x0,j = xm,j , xm+1,j = x1,j , xj,0 = xj,m,
xj,m+1 = xj,1. For simplicity, we also assume that J = 1. The probability of obtaining a
specific system state is then given by the Boltzmann distribution with probability mass
function

f(x) ≡ fβ(x) =
1

Zβ
e−H(x)β , (8)

where β = 1/(kBT ) denotes the so-called inverse-temperature (or thermodynamic beta)
with kB being the Boltzmann constant and T the absolute temperature. Here, Zβ de-
notes the normalization constant that makes the target distribution fβ : {−1,+1}m×m →
R+ a proper probability mass function. Let us denote by M(x) =

∑m
i,j=1 xij/m

2 the sys-
tem’s magnetic moment corresponding to the configuration x. Notice that the random
realizations of the configuration matrix x depend on the inverse temperature β. The
expected value of the magnetic moment M(β) as a function of the inverse temperature
β thus reads

M(β) =
∑
x∈K

M(x)fβ(x) =
1

Zβ

∑
x∈K

M(x)e−H(x)β , (9)

where K = {−1, 1}m×m is the set of all possible system configurations. Propose an
MCMC algorithm to sample from fβ and use the described unbiasing technique in
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Algorithm 1 to estimate the expected value of the magnetic moment. Argue that
E[M(β)] = 0 and assess the quality of your estimates. Use lattice size m = 32 and
experiment different values of β ∈ (0.2, 0.45).
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