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Sampling via measure transport

1 Introduction and background
The need to sample from complex probability distributions appears in many applications,
i.e., those with a high computational cost associated with evaluating their probability density
function, or presenting non-Gaussian features, multi-modality, very strong correlations, etc.
This constitutes a challenge for many traditional sampling algorithms. A recent approach
directed at alleviating these challenges, proposed by [1], is based on the theory of transport
maps. Consider a reference measure µref, such that obtaining samples from µref is simple, and
a target distribution µtarget, which exhibits some of the aforementioned complexities. In this
case, µref can be, e.g, a standard Gaussian measure. The idea behind transport maps is to
construct a transformation T such that we can (easily) generate samples from µtarget, by first
generating samples from µref and then transforming them into samples from µtarget using T .
Constructing such a map T that exactly transforms µref into µtarget is often out of reach.
Yet, the idea can be used to construct proposal distributions within a Metropolis Hastings
algorithm

1.1 Construction of the map
Let B(Rn) be the Borel σ-algebra on Rn, µref, µtarget : B(Rn) → [0, 1] be probability measures
and T : Rn → Rn an invertible map. We say that a map T pushes forward µref to µtarget if
µtarget(A) = µref(T

−1(A)) for any set A ∈ B(Rn), which can be written compactly as

T♯µref = µtarget. (1)

We shall refer to T♯µref as the push-forward distribution of µref. Another way to charac-
terize the push-forward measure T♯µref is to say that if X ∼ µref is a random variable
with distribution µref , then Z = T (X) has distribution T♯µref . Fig. 1 gives a pictorial rep-
resentation, showing an i.i.d. sample X(1), ..., X(M) i.i.d∼ µref and the transformed sample
Z(i) = T (X(i)), i = 1, ...,M .

If the distributions µref and µtarget admit corresponding densities η and π with respect
to the Lebesgue measure, we can re-write (1) as T♯η = π, which corresponds to:

π = η ◦ T−1
∣∣∣det∇T−1

∣∣∣ , (2)

where ∇T−1 denotes the Jacobian of the inverse of the map T . The transport map T satisfying
(1) can be seen as a deterministic coupling between µref and µtarget.
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Figure 1: Example of a mapping between µref and µtarget in R2 through the transport map
T .

The crux of the method lies then in constructing such map T . In general, there can be
infinitely many such transformations T , and the study of how to find transport maps that
are “optimal” in some given sense has been actively developed in recent years, both from a
theoretical and a computational perspective. For simplicity, however, we will consider the
following family of parametric triangular maps Tαd

: Rn 7→ Rn

Tαd
= T (x;αd) =


T 1(x1;αd)

T 2(x1, x2;αd)
...

Tn(x1, x2, . . . , xn;αd)

 , (3)

that depends on the (unknown) parameters αd, as follows:

T 1(x1;αd) = α1,0 +

∫ x1

0
exp

 d∑
i=0

α1,iw
i

 dw (4)

T 2(x1, x2;αd) =

 d∑
i=0

α2,ix
i
1

+

∫ x2

0
exp

 ∑
0≤i1+i2≤d

α2,i1i2x
i1
1 w

i2

 dw (5)

...

T k(x1, . . . , xk;αd) =

 ∑
0≤i1+i2+···+ik−1≤d

αk,i1i2...ik−1
xi11 x

i2
2 . . . x

ik−1

k−1


+

∫ xk

0
exp

 ∑
0≤i1+i2+···+ik≤d

αk,i1i2...ikx
i1
1 x

i2
2 . . . x

ik−1

k−1w
ik

 dw, (6)

where αd =
{
a1,0, {a1,i}di=0, . . . , {ak,i1...ik}|ik|≤d

}
, with |ik| := i1 + i2 + · · · + ik, is a set of

unknown coefficients. Notice that T k is the k-th component of the map which only depends
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on the first k variables. The transport map is then constructed by finding αd such that
if X ∼ µref, the distribution of Z = T (X,αd) closely resembles µtarget. To do so, we first
introduce a measure of “distance” between (equivalent) probability measures.

Definition: Let P and Q be equivalent probability measures on (Rn,B(Rn)), having
densities p, q with respect to the Lebesgue measure. We define the Kullback-Leibler (KL)
divergence of Q from P as

DKL(P ‖ Q) := Ep

[
log

(
p

q

)]
=

∫
Rn

p(x) log

(
p(x)

q(x)

)
dx. (7)

Notice that the KL divergence is not, in general, symmetric, and as such it is not a proper
distance. Moreover, DKL(P ‖ Q) ≥ 0, with equality only when p = q, P -almost everywhere.
Given an i.i.d. sample X(1), ..., X(M) ∼ p, the KL divergence can be approximated as

DKL(P ‖ Q) ≈ DM
KL(P ‖ Q) :=

1

M

M∑
i=1

log

[
p(X(i))

q(X(i))

]
, X(i) i.i.d∼ p. (8)

Having defined a notion of divergence between probability measures, we can cast the
construction of the transport map as the following unconstrained minimization problem:

min
αd∈Rd

DM
KL(Tαd♯η ‖ π)

= min
αd∈Rd

DM
KL(η ‖ T−1

αd♯
π)

= min
αd∈Rd

1

M

M∑
i=1

[
− log(Tαd

X(i))− log | det∇Tαd
(X(i))|

]
, X(i) i.i.d.∼ p (9)

Notice that it is enough to know the target density π up to a multiplicative constant as this
does not change the minimizer in (9). Once such a transformation has been found, we can
use the transport map to construct a proposal distribution for MCMC. We illustrate such an
approach on the following simple Bayesian inverse problem (BIP).

1.2 Bayesian inference for a biochemical oxygen demand problem
We consider a Bayesian inference problem involving a model of biochemical oxygen demand
(BOD) commonly used in water quality monitoring. Biochemical oxygen demand is the
amount of dissolved oxygen needed (i.e. demanded) by aerobic biological organisms to break
down organic material present in a given water sample at certain temperature over a specific
time period. A simplified continuous time model for the BOD is given by

B(t;x) := a(x1)(1− e−b(x2)t), (x1, x2) =: x, (10)

a(x1) :=

0.4 + 0.4

(
1 + erf

(
x1√
2

)) , (11)

b(x2) :=

0.01 + 0.15

(
1 + erf

(
x2√
2

)) , (12)
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where t represents time, x ∈ R2 is an unknown random parameter, and erf(x) is the so-called
error function1, given by erf(x) := 1√

2

∫ x
−x e

−t2dt. Suppose an array of data y ∈ R5 is collected
at 5 different times t1 = 1, t2 = 2, . . . , t5 = 5, where each measurement yi ∈ R is assumed to
be polluted by an additive Gaussian noise ϵi ∈ R, i.e., we assume that each measurement is
modeled by

yi = B(ti;x) + ϵi, ϵi ∼ N (0, σ2), i = 1, 2, . . . , 5.

Our goal is to characterize the distribution of the set of random parameters x conditioned
on the measured data y, denoted by π(x|y), usually called posterior distribution. Assuming
that x is independent of ϵ, it follows from Bayes’ theorem and the assumption of additive
Gaussian noise that

πy(x) := π(x|y)︸ ︷︷ ︸
posterior

∝ exp

− 1

2σ2

5∑
i=1

(yi −B(ti;x))
2


︸ ︷︷ ︸

likelihood

η(x)︸︷︷︸
prior

, (13)

where the likelihood measures the misfit between the observed data y and {B(ti;x)}5i=1,
and the prior models the randomness of x before y is observed. Notice that the posterior
distribution is only known up to a normalization constant. One way of characterizing π(x|y) is
to sample from it. This can, in turn be done using Markov chain Monte Carlo. In this project,
we will construct an approximate transport map from the prior distribution η to the posterior
distribution πy, which is then used to construct a proposal distribution within a MCMC
algorithm. In particular we will assume that ϵi ∼ N (0, 10−3), i = 1, . . . , 5, η = N (0, I2×2),
where I2×2 is the identity matrix in R2 and that the recorded, noise-polluted data is given
by:

y = [0.18, 0.32, 0.42, 0.49, 0.54]. (14)

2 Goals of the project
1. Implement a random walk Metropolis (RWM) algorithm to sample from (13). Plot the

(estimated) density πy from the obtained chain, as well as the usual MCMC diagnostics,
such as traceplots and autocorrelation functions. Report the effective sample size and
the acceptance rate of your chain. The obtained chain will be the “reference ” sample
from πy. Use your sample to estimate Eπy [x1] and Eπy [x2].

2. Show that the map Tαd
is invertible for any choice of paramters αd. Also, prove the

equalities in Eq. (9).

3. Construct an approximate transport map from the prior η to the posterior distribution
πy by solving the optimization problem (9), using different polynomial degree d =
1, 2, 3, 4. You can replace the Monte Carlo appoximation in (9) by another quadrature
formula, if you prefer. Plot the resulting KL divergence as a function of d.
Hint: You can use the scipy.optimize package to perform the numerical minimiza-
tion.

1You can evaluate the error function in Python using the Scipy function scipy.special.erf
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4. Once such map has been constructed, we can use it to improve MCMC in one of the
following ways:

a) In the independent Sampler (IS) algorithm. Recall that in this case, the proposal
distribution q(X(i), X∗) does not depend on the current state of the chain X(i),
i.e., q(X(i), X∗) = q(X∗), and is here taken as Tαd♯η. This version of MH is attrac-
tive from a computational point of view provided that the proposal distribution
closely resembles the target distribution πy, which will be hopefully the case if the
transport map is sufficiently accurate.
Implement a transport map-based independent sampler (TMIS) algorithm to ob-
tain a sample size of N = 25000 from πy, using maps of different polynomial
degree. Compare your results to those obtained in Point 1.

b) An alternative implementation is to combine a RWM with TMIS. The rationale
behind this is to guarantee convergence to the target distribution πy, in case that
the constructed map is not very accurate. Thus, at each iteration of the MH
algorithm, we do a step of RWM with probability γ, or a step of TMIS with
probability 1 − γ, for some γ ∈ (0, 1), usually chosen a priori. Implement this
approach to obtain a sample size of N = 25000 from πy and compare your results
with those from Point 1 and 4a.

5. Alternative to building the “forward” map T that transforms the prior into an approxi-
mation of the posterior, one could construct the “inverse” map S = T−1 that transforms
the posterior into an approximation of the prior. Samples from the posterior can be
obtained from a preliminary MCMC. The inverse map S can be used to build a proposal
for a Metropolis Hastings (MH) algorithm as follows: given the current state X(i) of
the chain,

• Compute X̂(i) = S(X(i)) (X̂(i) will have a distribution close to the prior).
• Generate Ŷ (i) from a proposal kernel Q(X̂(i), ·)
• Generate the candidate state Y (i) = S−1(Ŷ (i)).

Write the MH acceptance probability for the candidate Y (i). Consider a Gaussian
proposal kernel Q(X̂(i), ·) = N (X̂(i), σ2I). Implement this version of the MH algorithm
and compare its performance with that of the algorithms of point 4.

6. The interesting feature of the algorithm in point 5 which uses the inverse transport map
is that one could construct an adaptive version of it which, when new samples from the
posterior become available, these can be used to improve the inverse map S. Explore
possible adaptive versions of the algorithm in point 5.

References
[1] Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini. Sampling via

measure transport: An introduction. In Handbook of Uncertainty Quantification, pages
1–41. Springer, 2016.

[2] Matthew D Parno and Youssef M Marzouk. Transport map accelerated Markov Chain
Monte Carlo. SIAM/ASA Journal on Uncertainty Quantification, 6(2):645–682, 2018.

5


