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Monte Carlo estimation of Sensitivities in Finance

This project aims to explore the applicability of Monte Carlo methods for estimating
“sensitivities” as quantities that appear in several tasks in financial computations. Given a
financial model, we mean by sensitivities the derivatives of quantities of interest with respect
to parameteres such as volatility, stock price, interest rate, etc. Roughly speaking, one is
typically interested in quantifying how sensitive a quantity of interest (Qol), e.g. the price
of a call option, is with respect to those parameters. These Qol are commonly expressed
as expectations of output quantities of stochastic differential equations and therefore, Monte
Carlo estimation is a natural approach to compute them.

Note: This project requires several pen and paper computations. Since the maximum
length of the report is set in the project rules, please avoid reporting all of them in detail, and
rather focus your report on commenting the numerical results obtained.

1 Asset price model

The standard and perhaps the most common SDE that appears in the famous Black-Scholes
model is a geometric Brownian motion, given by

dS; = rSidt + 0 SedWy, t >0, Sy given (1)

where r is the interest rate, o is the volatility, both assumed here to be constant, and W} is a
standard Brownian motion. Using It6’s formula we can derive the SDE for X; = log(.S;/So),
that is

1

dX, = (r — 5(;2)dt +odW;, t>0, Xg=0 (2)

for which the solution at time ¢t =T can be easily obtained by integration and is

1
Xp=(r- 5(;Q)T + oWy (3)
therefore
1

St = Sy exp {(7’ - 502)T + UWT} . (4)

We are normally interested in the expected value of some function of St, say
I=E(f(S)] = [ 1 (Soexp {(r = */2)T + ow}) pw, (w)du (5)
R
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where py,(-) is the probability density function of a AN(0,7) Gaussian random variable.
Equivalently, by applying a change of variables, we can express the integral as an expectation
with respect to the probability density of St, obtaining

I=Elf(sn] = [ 1) ps (o). (6)

where, setting w = (log(s/So) — (r — 0/2)T) /o, we have

- og(s —(r— 152 2
pse) =) (G ) 0= e | (1 S )T> .

2 Estimating sensitivities

From the above, it can be understood that the constant quantities Sy, o, r are parameters
that can generally affect the outcome of S; and therefore E[f(S7)]. The degree of variability
of I = E[f(S7)] when those parameters change can be measured by the derivative of I with
respect to the corresponding parameters, therefore we call these derivatives as sensitivities as
they provide us with a measure of how sensitive the quantity of interest is. In the following,
we present three main techniques to estimate the sensitivities. More details on Monte Carlo
strategies applied on each method can be found in [1, Chapter 7].

2.1 Finite differences

The most straightforward approach to estimate the derivatives of I with respect to some
parameter 6 is to apply finite differences, that is to compute

oI I(0+A9) —I1(6— A
00~ 2A0

(8)
and
0’1 16+ Af) —21(0) +1(6 — Ab) ()
062 "~ (A6)2 '
In the context of Monte Carlo estimation, one can estimate all of the terms I(6+A#0), I(6), (60—
A®) using the same Monte Carlo sample of W and the respective Sy.

2.2 Pathwise derivatives

Assuming that the derivative and the integral are interchangeable (which is not always true),
that is

0 0
B0 =E | 150 (10)
we can compute the first derivative of I as
or y oSt
5 =E 1% (1)



and the second derivative as

021 oS 057\ 2
S —E |1 %r+ risn) (5 ] (12)

where the derivative of the stochastic process S; with respect to 6, called the pathwise deriva-
tive, corresponds to limy_,o(S¢(6 +h) — S¢(0))/h, if the limit exists almost surely. In this case,
one can write a corresponding SDE for such derivatives. Again, in a Monte Carlo setting one
will approximate the expectations in (11) and (12) by sample averages.

2.3 Likelihood ratio

In the case where the change of variable has been applied and the interchange of the derivative
and the integral is again possible, we can write

o1 < . 1 Opsy(s) Po(St)
where pg(s) = apsaqé(s). The quantity pi@(?i) = % log ps, (s) is also referred to as score function.
T

3 Application to option pricing and goals of the miniproject

3.1 European call option

Consider the quantity

f(Sr) =e T[Sy - KT, (14)
where [z]T = max{z,0}, interest rate » = 0.05, maturity time 7" = 1, volatility o = 0.25
initial asset price Sy = 100 and strike price K = 120.

We are interested in estimating the following quantities shown in Table 1, known as “the
Greeks” in finance:

Name | Symbol ‘ Definition
Delta 0 8f(ST)/aSO

Vega v of(Sr)/0c

Gamma 0% 0%f(Sr)/0S2

Table 1: Greeks in finance. See [2] for a complete list.

(a) Estimate 6 and v using the finite difference, pathwise derivative and likelihood ratio
(LR) methods and plot the estimates together with a confidence interval as a function
of the sample size N € [103,105]. For the finite difference method, consider different
values of h and comment on the bias as h decreases. In this case, would an estimator
based on two independent iid samples to estimate (0 + Af) and I(0 — Af) perform
better or worse? Give some theoretical arguments to answer this question.



(b) Estimate v by applying all possible combinations of pathwise derivative and LR methods
in the computation of the first and second derivatives or comment on the one(s) that
are not applicable. Plot the estimates and an error bound as a function of IV, as above.
Comment on the results.

3.2 Mixed estimators for Digital call option

Besides estimating Greeks that involve second derivatives of an asset price model (see point (b)
above), another case where different methods can be combined together is when a discontinuity
is present. Consider the price of the Digital call option, defined as

F(Sr) = e M ligor)- (15)

In order to get a 0 estimator on the above, one can write

Lisky = fe(z) + (]l{a:>K} — fe(x)) = fe(x) + he(z), (16)

where f(z) is a continuous approximation of 1,5 gy, e.g., fe(r) = min{1, max{0, x,§§+e}}
and then we can apply pathwise differentiation for %E[ fe(ST)] and likelihood ratio for

52 E[he(ST)]

(c) Estimate § using the above estimator for e = 20, Sy = K = 100, T = 0.25 and the
remaining parameters as before. Use a pilot run to find how to split optimally a sample
of size N between the two parts of the estimator.

(d) Plot the variance of the estimator (with optimal sample splitting) as a function of
e € [0,80] and find e (approximately) that achieves the minimum (the case € = 0
corresponds to using only the LR method on f(S7)).

3.3 Path-dependent option

Consider now an Asian option having payoff
F(ST/ms Sorms -, S1) = e T[Sy — K] T (17)

where Sp = % > ity Sir/m is the discrete monitoring average in the time interval [0,T]. Tt is
clear that the price is now dependent on the path of Sy and not only on the final asset price
St.

(e) Describe how the pathwise derivative and likelihood ratio methods could be applied in
this case to compute the Delta and Vega Greeks.
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