Stochastic Simulation

Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Project

Submission deadline: 16 January 2025

Multi-level Monte Carlo methods for option pricing

1 Introduction and Background

Consider the goal of computing $\mu = \mathbb{E}[Y]$ where Y is the output of some stochastic model. In many applications, the stochastic model involves some differential operator and, as such, it can not be simulated exactly and a "discretization step" is necessary, characterized by a discretization parameter h, as, for instance, the characteristic mesh size in a finite difference approximation. It follows that we can only simulate an approximate output quantity Y_h . A Monte Carlo estimator for μ will look like

$$\hat{\mu}_h^{\text{MC}} = \frac{1}{N} \sum_{i=1}^N Y_h^{(i)}, \quad \text{with } Y_h^{(i)} \stackrel{iid}{\sim} Y_h, \tag{1}$$

and will be a biased estimator, since, due to the discretization step, $\mathbb{E}[\hat{\mu}_h^{MC}] = \mathbb{E}[Y_h] \neq \mathbb{E}[Y]$.

As an example of the above framework, we consider in this project the problem of computing the expectation of a quantity $Y = f(S_T)$, which involves the final time value of the solution of a stochastic differential equation (SDE)

$$dS(t) = a(S(t), t)dt + b(S(t), t)dW_t, \quad t \in (0, T], \quad S(0) = S_0,$$
(2)

where W_t is a standard Brownian motion. The exact solution of equation (2) is in general not known, except for special forms of a and b, but it can be approximated using, for instance, the Euler-Maruyama scheme. Let $t_m = mh$, m = 1, ..., M = T/h, and S^m be the approximation of $S(t_m)$ given by

$$S^{m+1} = S^m + a(S^m, t_m)h + b(S^m, t_m)\Delta W_m$$
, with $\Delta W_m \stackrel{iid}{\sim} N(0, h)$, $m = 0, \dots, M-1$

and $S^0 = S_0$. Under certain regularity conditions on a, b, and f, it can be shown that

$$|\mathbb{E}[Y_h] - \mathbb{E}[Y]| = \mathcal{O}(h),$$

so that the mean squared error (MSE) of the Monte Carlo estimator satisfies

$$\mathrm{MSE}(\hat{\mu}_h^{\mathrm{MC}}) := \mathbb{E}\left[(\hat{\mu}_h^{MC} - \mu)^2\right] = \frac{\mathrm{Var}[Y_h]}{N} + \mathcal{O}(h^2).$$

The convergence rate $\alpha=1$ of the bias term $|\mathbb{E}[Y_h]-\mathbb{E}[Y]|=\mathcal{O}(h^{\alpha})$ is referred to as the weak converge rate (convergence on the expectation), as opposed to the strong convergence rate, which is the convergence rate of the error $\mathbb{E}[|Y_h-Y|^p]^{1/p}=\mathcal{O}(h^{\eta})$, for some $p\geq 1$, usually with $\eta=1/2$. If we assume that the cost per simulation is proportional to the number of steps, hence $\mathcal{O}(h)$ and $\mathrm{Var}[Y_h]=\mathcal{O}(1)$, then, the choice $N_{\epsilon}=O(\epsilon^{-2})$ and $h_{\epsilon}=O(\epsilon)$ guarantees a MSE of order ϵ^2 and the corresponding total cost of computing $\hat{\mu}_h^{MC}$ is $C_{\epsilon}=O(Nh^{-1})=O(\epsilon^{-3})$. The aim of Multi-level Monte Carlo is to improve this order. A brief description is given in the following sections, however, you are encouraged to read the first chapter of [1] for more details.

1.1 Multi-level Monte Carlo: a two level approach

MLMC is, essentially, a control variate technique for which we use the quantity of interest obtained with a coarser (i.e, less accurate) discretization as a control variable. We begin by discussing the two-level MLMC. Let $h_1 < h_0$ correspond to two discretization parameters, such that $Y_{h_1} := Y_1$ is a more accurate approximation of Y than $Y_{h_0} := Y_0$, yet being also more expensive to simulate. Notice that we can write

$$\mathbb{E}[Y_1] = E[Y_0] + \mathbb{E}[Y_1 - Y_0],$$

and as such, we can use the following 2-level estimator,

$$\hat{\mu}^{\text{2-level}} = N_0^{-1} \sum_{n=1}^{N_0} Y_0^{(n,0)} + N_1^{-1} \sum_{n=1}^{N_1} (Y_1^{(n,1)} - Y_0^{(n,1)}), \tag{3}$$

where $Y^{(n,0)}$ and $Y_1^{(n,1)} - Y_0^{(n,1)}$ are simulated independently, whereas $Y_1^{(n,1)}$, and $Y_0^{(n,1)}$ are simulated using the same underlying noise. If we let C_0 denote the cost of simulating Y_0 , C_1 the cost of simulating $Y_1 - Y_0$, and introduce the notation $V_0 = \text{Var}[Y_0]$ and $V_1 = \text{Var}[Y_1 - Y_0]$, then an optimal allocation of N_0 , N_1 (when treating N_0 , N_1 as real numbers) that minimizes the variance of the estimator $\hat{\mu}^{2\text{-level}}$ at a fixed cost satisfies:

$$\frac{N_1}{N_0} = \frac{\sqrt{V_1/C_1}}{\sqrt{V_0/C_0}}. (4)$$

1.2 Multi-level Monte Carlo: multiple levels

The idea of the previous subsection can be easily generalized to a higher number of levels. Consider a sequence of levels $\ell = 0, 1, ..., L$, such that $Y_0, Y_1, ..., Y_L$ approximate Y with increasing accuracy and cost. As before, we can write $\mathbb{E}[Y_L]$ as

$$\mathbb{E}[Y_L] = \mathbb{E}[Y_0] + \sum_{\ell=1}^{L} \mathbb{E}[Y_\ell - Y_{\ell-1}] = \sum_{\ell=0}^{L} \mathbb{E}[Y_\ell - Y_{\ell-1}],$$

where in the last equality, we have used the convention that $Y_{-1} = 0$, and define the multi-level estimator

$$\hat{\mu}_L^{\text{MLMC}} \approx \sum_{\ell=0}^{L} \left[N_{\ell}^{-1} \sum_{n=1}^{N_{\ell}} (Y_{\ell}^{(n,\ell)} - Y_{\ell-1}^{(n,\ell)}) \right]$$

where, again, $Y_{\ell}^{(n,\ell)}$ and $Y_{\ell-1}^{(n,\ell)}$ are simulated using the same underlying noise, whereas $Y_{\ell}^{(n,\ell)} - Y_{\ell-1}^{(n,\ell)}$ and $Y_{k}^{(m,k)} - Y_{k-1}^{(m,k)}$ are generated independently for $k \neq \ell$ or $m \neq n$. Proceeding as before, we denote by C_{ℓ} the cost of evaluating $Y_{\ell} - Y_{\ell-1}$ and by V_{ℓ} its variance.

It can be shown (see [1]) that a quasi-optimal allocation of $N_0, N_1, \dots N_L$ that minimizes the total cost of the estimator $\hat{\mu}_L^{\text{MLMC}}$ for a total variance $V_{\text{MLMC}} \leq \epsilon^2$, is:

$$N_{\ell} = \left[\epsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right) \sqrt{\frac{V_{\ell}}{C_{\ell}}} \right], \tag{5}$$

where $\lceil \cdot \rceil$ denotes the ceiling function (approximation to the nearest larger natural number). Notice that, in practice, $V_{\ell} \leq V_{\ell-1}$, as the discretization gets more accurate as ℓ increases, and $C_{\ell} \geq C_{\ell-1}$. Thus we have that $N_{\ell} < N_{\ell-1}$. The idea of the method is then to use large sample sizes at the lower accuracy-cost discretizations, and correct with smaller and smaller sample sizes as we move up on the levels ℓ . The following theorem, whose proof can be found in [1], gives a bound on the total cost of the MLMC estimator to achieve $\text{MSE} \leq \epsilon^2$. In particular, the theorem shows that, asymptotically, as $\epsilon \to 0$, the cost of the (optimally tuned) MLMC estimator is always smaller than the cost of the single-level Monte Carlo estimator (1), provided some assumptions on the decay of the weak and strong errors and increase of the cost with respect to ℓ are satisfied:

Theorem 1: Let Y denote a random variable and let Y_{ℓ} denote the approximation of Y at level ℓ . Let $\hat{\mu}_{\ell}$ be a Monte Carlo estimator of $\mathbb{E}[Y_{\ell} - Y_{\ell-1}]$ based on N_{ℓ} independent replicas of $Y_{\ell} - Y_{\ell-1}$, each with cost C_{ℓ} and variance V_{ℓ} . If there exist positive constants $\alpha, \beta, \gamma, c_1, c_2, c_3$ such that $\alpha \geq \frac{1}{2} \min(\beta, \gamma)$, and

$$i. |\mathbb{E}[Y_{\ell} - Y]| \le c_1 2^{-\alpha \ell}$$

ii.
$$\mathbb{E}[\hat{\mu}_{\ell}] = \mathbb{E}[Y_{\ell} - Y_{\ell-1}], \quad Y_{-1} = 0,$$

iii.
$$V_{\ell} \leq c_2 2^{-\beta \ell}$$
,

iv.
$$C_{\ell} \leq c_3 2^{\gamma \ell}$$
,

then there exists a positive constant c_4 such that for any $\epsilon < e^{-1}$ there are values L and N_ℓ for which the multi-level estimator

$$\hat{\mu}_L^{MLMC} = \sum_{\ell=0}^L \hat{\mu}_\ell$$

has a mean squared error smaller than ϵ^2 , with computational cost C_{MLMC} given by

$$\mathbb{E}[C_{MLMC}] \le \begin{cases} c_4 \epsilon^{-2}, & \text{if } \beta > \gamma, \\ c_4 \epsilon^{-2} |\log(\epsilon)|^2, & \text{if } \beta = \gamma, \\ c_4 \epsilon^{-2-(\gamma-\beta)/\alpha}, & \text{if } \beta < \gamma. \end{cases}$$

2 Goals of the project

We would like to apply the MLMC algorithm for option pricing. We consider the underlying SDE to follow a simple geometric Brownian motion described by

$$dS(t) = rS(t)dt + \sigma S(t)dW_t, \quad 0 < t < 1, \tag{6}$$

with S(0) = 1, r = 0.05 and $\sigma = 0.2$ and W_t a standard Brownian motion. The idea then is to investigate the expected payoff $\mu = \mathbb{E}[Y]$ for different types of options, namely, we will investigate:

1) Asian option: $Y^{(1)} = \exp(-r) \max(0, \bar{S} - K)$, with

$$\bar{S} = \int_0^1 S(t)dt.$$

2) Barrier call option: $Y^{(2)} = \exp(-r) \max(0, S(1) - K) \mathbb{1}_{\{\max_{t \in [0,1]} S(t) < S_{max}\}}$.

for K = 1. Please address the following points:

- (a) Give a sketch of the proof of the optimality of formulas (4) and (5) when N_{ℓ} are treated as real numbers.
- (b) Implement a standard Monte Carlo estimator for payoff 1. To do so, approximate \bar{S} as $\bar{S} \approx h \sum_{m=1}^{M} \frac{S^m + S^{m-1}}{2}$ where $S^m = S(mh)$ (or an approximation of it) and M = 1/h is the number of time steps.

Investigate how the bias and variance of your estimator scale with respect to h and N. You can estimate the bias by comparing $\mathbb{E}[Y_h^{(1)}]$ with $\mathbb{E}[Y_{2h}^{(1)}]$. Use the same sample to estimate both expectations. Propose an adaptive algorithm to estimate $\mathbb{E}[Y^{(1)}]$ satisfying $MSE(Y^{(1)}) \leq \epsilon^2$.

- (c) Consider now a 2-level MLMC, and again payoff 1. Estimate N_1/N_0 based on a pilot run using two grids $h_1 = 0.1$ and $h_0 = 0.2$, considering that $C_1 = 2C_0$. Implement the 2-level MLMC and quantify the variance reduction obtained by $\hat{\mu}^{2\text{-level}}$ with respect to the crude Monte Carlo estimator of point (b) with $h = h_1$ that has comparable cost. What can you say about the bias of $\hat{\mu}^{2\text{-level}}$ in comparison to that of the crude Monte Carlo estimator of point (b)?
- (d) We now move to a multi-level approach. Consider again payoff 1 and the hierarchy of meshes h_{ℓ} , $\ell=0,1,\ldots$, with $h_{\ell}=0.2\times 2^{-\ell}$, so that the unit costs are $C_{\ell}=C_02^{\ell}$. Moreover, assume that $V_{\ell}=\mathbb{V}ar[Y_{\ell}^{(1)}-Y_{\ell-1}^{(1)}]\tilde{=}V_02^{-\beta\ell}$, $\beta=1$, $\ell=1,2,\ldots,L$, and $E_{\ell}:=|\mathbb{E}[Y_{\ell}^{(1)}-Y_{\ell-1}^{(1)}]\tilde{=}E_02^{-\alpha\ell}$, $\alpha=1$. Estimate \tilde{V}_0,\tilde{E}_0 from a pilot run (i.e, from a relatively small sample size at each level for the first few levels). Then, implement the multi-level Monte Carlo estimator using (5) and choosing appropriately L and $\{N_l\}_{l=0}^L$ based on your estimated weak errors E_{ℓ} and variances V_{ℓ} to achieve a MSE less than $2\epsilon^2$. Compare the computational work required for the MLMC estimator to that of a standard Monte Carlo estimator that achieves the same MSE for different tolerance values ϵ . Comment on the obtained results.

(e) Consider now the payoff 2 with $S_{max} = 1.5$ and its approximation

$$Y_h^{(2)} = e^{-r} \max \left\{ 0, S^M - K \right\} \mathbb{1}_{\{\max_{m=0,\dots,M} S^m < S_{max}\}}, \quad M = 1/h, \tag{7}$$

where $\{S^m\}_{m=0}^M$ are the values of the process at $t_m=mh$. Repeat the previous point, estimating α and β numerically using the first few levels. Report α and β and comment your results.

(f) Consider now a higher strike price K = 2 and $S_{max} = 2.5$. For each of the two payoffs, compute a (crude) Monte Carlo estimator of $\mathbb{E}[Y]$. Propose and implement a Variance Reduction Technique (VRT) for such an estimator and report your results. Can this VRT be used in the context of MLMC as well?

References

[1] Giles, M. B. (2015). Multilevel Monte Carlo Methods. Acta Numerica, 24, 259-328.