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Multi-level Monte Carlo methods for option pricing

1 Introduction and Background
Consider the goal of computing µ = E[Y ] where Y is the output of some stochastic model.
In many applications, the stochastic model involves some differential operator and, as such,
it can not be simulated exactly and a “discretization step” is necessary, characterized by a
discretization parameter h, as, for instance, the characteristic mesh size in a finite difference
approximation. It follows that we can only simulate an approximate output quantity Yh. A
Monte Carlo estimator for µ will look like

µ̂MC
h =

1

N

N∑
i=1

Y
(i)
h , with Y

(i)
h

iid∼ Yh, (1)

and will be a biased estimator, since, due to the discretization step, E[µ̂MC
h ] = E[Yh] 6= E[Y ].

As an example of the above framework, we consider in this project the problem of com-
puting the expectation of a quantity Y = f(ST ), which involves the final time value of the
solution of a stochastic differential equation (SDE)

dS(t) = a(S(t), t)dt+ b(S(t), t)dWt, t ∈ (0, T ], S(0) = S0, (2)

where Wt is a standard Brownian motion. The exact solution of equation (2) is in general
not known, except for special forms of a and b, but it can be approximated using, for in-
stance, the Euler-Maruyama scheme. Let tm = mh, m = 1, . . . ,M = T/h, and Sm be the
approximation of S(tm) given by

Sm+1 = Sm + a(Sm, tm)h+ b(Sm, tm)∆Wm, with ∆Wm
iid∼ N(0, h), m = 0, . . . ,M − 1

and S0 = S0. Under certain regularity conditions on a, b, and f , it can be shown that

|E[Yh]− E[Y ]| = O(h),

so that the mean squared error (MSE) of the Monte Carlo estimator satisfies

MSE(µ̂MC
h ) := E

[
(µ̂MC

h − µ)2
]
=

Var[Yh]

N
+O(h2).
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The convergence rate α = 1 of the bias term |E[Yh]−E[Y ]| = O(hα) is refereed to as the weak
converge rate (convergence on the expectation), as opposed to the strong convergence rate,
which is the convergence rate of the error E[|Yh − Y |p]1/p = O(hη), for some p ≥ 1, usually
with η = 1/2. If we assume that the cost per simulation is proportional to the number of steps,
hence O(h) and Var[Yh] = O(1), then, the choice Nε = O(ε−2) and hε = O(ε) guarantees a
MSE of order ε2 and the corresponding total cost of computing µ̂MC

h is Cε = O(Nh−1) =
O(ε−3). The aim of Multi-level Monte Carlo is to improve this order. A brief description is
given in the following sections, however, you are encouraged to read the first chapter of [1]
for more details.

1.1 Multi-level Monte Carlo: a two level approach

MLMC is, essentially, a control variate technique for which we use the quantity of interest
obtained with a coarser (i.e, less accurate) discretization as a control variable. We begin by
discussing the two-level MLMC. Let h1 < h0 correspond to two discretization parameters,
such that Yh1 := Y1 is a more accurate approximation of Y than Yh0 := Y0, yet being also
more expensive to simulate. Notice that we can write

E[Y1] = E[Y0] + E[Y1 − Y0],

and as such, we can use the following 2-level estimator,

µ̂2-level = N−1
0

N0∑
n=1

Y
(n,0)
0 +N−1

1

N1∑
n=1

(Y
(n,1)
1 − Y

(n,1)
0 ), (3)

where Y (n,0) and Y
(n,1)
1 − Y

(n,1)
0 are simulated independently, whereas Y

(n,1)
1 , and Y

(n,1)
0 are

simulated using the same underlying noise. If we let C0 denote the cost of simulating Y0 , C1

the cost of simulating Y1−Y0, and introduce the notation V0 = Var [Y0] and V1 = Var[Y1−Y0],
then an optimal allocation of N0, N1 (when treating N0, N1 as real numbers) that minimizes
the variance of the estimator µ̂2-level at a fixed cost satisfies:

N1

N0
=

√
V1/C1√
V0/C0

. (4)

1.2 Multi-level Monte Carlo: multiple levels

The idea of the previous subsection can be easily generalized to a higher number of levels.
Consider a sequence of levels ` = 0, 1, . . . , L, such that Y0, Y1, . . . , YL approximate Y with
increasing accuracy and cost. As before, we can write E[YL] as

E[YL] = E[Y0] +
L∑

`=1

E[Y` − Y`−1] =
L∑

`=0

E[Y` − Y`−1],

where in the last equality, we have used the convention that Y−1 = 0, and define the multi-level
estimator

µ̂MLMC
L ≈

L∑
`=0

[
N−1

`

N∑̀
n=1

(Y
(n,`)
` − Y

(n,`)
`−1 )

]
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where, again, Y (n,`)
` and Y

(n,`)
`−1 are simulated using the same underlying noise, whereas Y (n,`)

` −
Y

(n,`)
`−1 and Y

(m,k)
k − Y

(m,k)
k−1 are generated independently for k 6= ` or m 6= n. Proceeding as

before, we denote by C` the cost of evaluating Y` − Y`−1 and by V` its variance.
It can be shown (see [1]) that a quasi-optimal allocation of N0, N1, . . . NL that minimizes

the total cost of the estimator µ̂MLMC
L for a total variance VMLMC ≤ ε2, is:

N` =

⌈
ε−2

(
L∑

`=0

√
V`C`

)√
V`

C`

⌉
, (5)

where d·e denotes the ceiling function (approximation to the nearest larger natural number).
Notice that, in practice, V` ≤ V`−1, as the discretization gets more accurate as ` increases,
and C` ≥ C`−1. Thus we have that N` < N`−1. The idea of the method is then to use large
sample sizes at the lower accuracy-cost discretizations, and correct with smaller and smaller
sample sizes as we move up on the levels `. The following theorem, whose proof can be found
in [1], gives a bound on the total cost of the MLMC estimator to achieve MSE≤ ε2. In par-
ticular, the theorem shows that, asymptotically, as ε → 0, the cost of the (optimally tuned)
MLMC estimator is always smaller than the cost of the single-level Monte Carlo estimator
(1), provided some assumptions on the decay of the weak and strong errors and increase of
the cost with respect to ` are satisfied:

Theorem 1: Let Y denote a random variable and let Y` denote the approximation of Y
at level `. Let µ̂` be a Monte Carlo estimator of E[Y`−Y`−1] based on N` independent replicas
of Y`−Y`−1, each with cost C` and variance V`. If there exist positive constants α, β, γ, c1, c2, c3
such that α ≥ 1

2 min(β, γ), and

i. |E[Y` − Y ]| ≤ c12
−α`

ii. E[µ̂`] = E[Y` − Y`−1], Y−1 = 0,

iii. V` ≤ c22
−β`,

iv. C` ≤ c32
γ`,

then there exists a positive constant c4 such that for any ε < e−1 there are values L and N`

for which the multi-level estimator

µ̂MLMC
L =

L∑
`=0

µ̂`

has a mean squared error smaller than ε2, with computational cost CMLMC given by

E[CMLMC] ≤


c4ε

−2, if β > γ,

c4ε
−2| log(ε)|2, if β = γ,

c4ε
−2−(γ−β)/α, if β < γ.
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2 Goals of the project
We would like to apply the MLMC algorithm for option pricing. We consider the underlying
SDE to follow a simple geometric Brownian motion described by

dS(t) = rS(t)dt+ σS(t)dWt, 0 < t < 1, (6)

with S(0) = 1, r = 0.05 and σ = 0.2 and Wt a standard Brownian motion. The idea then
is to investigate the expected payoff µ = E[Y ] for different types of options, namely, we will
investigate:

1) Asian option: Y (1) = exp(−r)max(0, S̄ −K), with

S̄ =

∫ 1

0
S(t)dt.

2) Barrier call option: Y (2) = exp(−r)max(0, S(1)−K)1{maxt∈[0,1] S(t)<Smax}.

for K = 1. Please address the following points:

(a) Give a sketch of the proof of the optimality of formulas (4) and (5) when N` are treated
as real numbers.

(b) Implement a standard Monte Carlo estimator for payoff 1. To do so, approximate S̄ as
S̄ ≈ h

∑M
m=1

Sm+Sm−1

2 where Sm = S(mh) (or an approximation of it) and M = 1/h is
the number of time steps.
Investigate how the bias and variance of your estimator scale with respect to h and
N . You can estimate the bias by comparing E[Y (1)

h ] with E[Y (1)
2h ]. Use the same sam-

ple to estimate both expectations. Propose an adaptive algorithm to estimate E[Y (1)]
satisfying MSE(Y (1)) ≤ ε2.

(c) Consider now a 2-level MLMC, and again payoff 1. Estimate N1/N0 based on a pilot
run using two grids h1 = 0.1 and h0 = 0.2, considering that C1 = 2C0. Implement the
2-level MLMC and quantify the variance reduction obtained by µ̂2-level with respect to
the crude Monte Carlo estimator of point (b) with h = h1 that has comparable cost.
What can you say about the bias of µ̂2-level in comparison to that of the crude Monte
Carlo estimator of point (b)?

(d) We now move to a multi-level approach. Consider again payoff 1 and the hierarchy of
meshes h`, ` = 0, 1, . . . , with h` = 0.2 × 2−`, so that the unit costs are C` = C02

`.

Moreover, assume that V` =: Var[Y (1)
l − Y

(1)
l−1]=̃V02

−β`, β = 1, ` = 1, 2, . . . , L, and
E` := |E[Y (1)

` − Y
(1)
`−1]=̃E02

−α`, α = 1. Estimate Ṽ0, Ẽ0 from a pilot run (i.e, from a
relatively small sample size at each level for the first few levels). Then, implement the
multi-level Monte Carlo estimator using (5) and choosing appropriately L and {Nl}Ll=0

based on your estimated weak errors E` and variances V` to achieve a MSE less than
2ε2. Compare the computational work required for the MLMC estimator to that of
a standard Monte Carlo estimator that achieves the same MSE for different tolerance
values ε. Comment on the obtained results.
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(e) Consider now the payoff 2 with Smax = 1.5 and its approximation

Y
(2)
h = e−r max

{
0, SM −K

}
1{maxm=0,...,M Sm<Smax}, M = 1/h, (7)

where {Sm}Mm=0 are the values of the process at tm = mh. Repeat the previous point,
estimating α and β numerically using the first few levels. Report α and β and comment
your results.

(f) Consider now a higher strike price K = 2 and Smax = 2.5. For each of the two payoffs,
compute a (crude) Monte Carlo estimator of E[Y ]. Propose and implement a Variance
Reduction Technique (VRT) for such an estimator and report your results. Can this
VRT be used in the context of MLMC as well?
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