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Multi-level Monte Carlo methods for option pricing

1 Introduction and Background

Consider the goal of computing p = E[Y] where Y is the output of some stochastic model.
In many applications, the stochastic model involves some differential operator and, as such,
it can not be simulated exactly and a “discretization step” is necessary, characterized by a
discretization parameter h, as, for instance, the characteristic mesh size in a finite difference
approximation. It follows that we can only simulate an approximate output quantity Y. A
Monte Carlo estimator for p will look like
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and will be a biased estimator, since, due to the discretization step, E[3}¢] = E[Y},] # E[Y].
As an example of the above framework, we consider in this project the problem of com-

puting the expectation of a quantity Y = f(S7), which involves the final time value of the
solution of a stochastic differential equation (SDE)

dS(t) = a(S(t), t)dt + b(S(t),t)dW;, te (0,T], S(0) = So, (2)

where W, is a standard Brownian motion. The exact solution of equation (2) is in general
not known, except for special forms of a and b, but it can be approximated using, for in-
stance, the Euler-Maruyama scheme. Let t,, = mh, m=1,...,M = T/h, and S™ be the
approximation of S(t,,) given by

S™HL = §™ 4 a(S™ ty)h A+ b(S™, t) AWy, with AW, % N(0,h), m =0,...,M —1
and S = Sy. Under certain regularity conditions on a,b, and f, it can be shown that
E[YA] — E[Y]| = O(h),
so that the mean squared error (MSE) of the Monte Carlo estimator satisfies

MSE() 1= B [(34€ - 2] = Y2 ogpe)



The convergence rate a = 1 of the bias term |E[Y;,] — E[Y]| = O(h?) is refereed to as the weak
converge rate (convergence on the expectation), as opposed to the strong convergence rate,
which is the convergence rate of the error E[|Y};, — Y|P]'/P = O(h"), for some p > 1, usually
with n = 1/2. If we assume that the cost per simulation is proportional to the number of steps,
hence O(h) and Var[Y;,] = O(1), then, the choice N, = O(e~2) and h. = O(€) guarantees a
MSE of order €2 and the corresponding total cost of computing ﬂhM Cis C. = O(NR™Y) =
O(e73). The aim of Multi-level Monte Carlo is to improve this order. A brief description is
given in the following sections, however, you are encouraged to read the first chapter of [1]
for more details.

1.1 Multi-level Monte Carlo: a two level approach

MLMC is, essentially, a control variate technique for which we use the quantity of interest
obtained with a coarser (i.e, less accurate) discretization as a control variable. We begin by
discussing the two-level MLMC. Let hy < hg correspond to two discretization parameters,
such that Y}, := Y7 is a more accurate approximation of Y than Y, := Y, yet being also
more expensive to simulate. Notice that we can write

EV1] = E[Yo] + E[Y1 - Yo,

and as such, we can use the following 2-level estimator,

A2level IZYNO)+N IZ Y'(”ll))7 (3)

where Y (0 and Yl(n’l) — Yo(n’l) are simulated independently, whereas Yl(n’l), and Yb(n’l) are
simulated using the same underlying noise. If we let Cy denote the cost of simulating Yy , Cq
the cost of simulating Y7 — Yy, and introduce the notation Vp = Var [Yp] and V; = Var[Y; —Yp],
then an optimal allocation of Ny, Ny (when treating Ny, N7 as real numbers) that minimizes

the variance of the estimator %1V at a fixed cost satisfies:
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1.2 Multi-level Monte Carlo: multiple levels

The idea of the previous subsection can be easily generalized to a higher number of levels.
Consider a sequence of levels £ = 0,1,..., L, such that Yy, Y7,...,Ys approximate Y with
increasing accuracy and cost. As before, we can write E[Y7] as

L L
E[YL] = E[Yo] + > E[Y; - Vi) = Y E[Y; - Vi),
=1 £=0

where in the last equality, we have used the convention that Y_; = 0, and define the multi-level

estimator
L
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where, again, Yz(n’z) and Yg(fig)

Yg(fie) and Yk(m’k) — Yér_nl’k) are generated independently for k # £ or m # n. Proceeding as

before, we denote by Cy the cost of evaluating Y, — Y,_1 and by V} its variance.
It can be shown (see [1]) that a quasi-optimal allocation of Ny, N1, ... Ny, that minimizes
the total cost of the estimator ,L]%LMC for a total variance Ve < €2, is:

where [-] denotes the ceiling function (approximation to the nearest larger natural number).
Notice that, in practice, V; < V;_1, as the discretization gets more accurate as £ increases,
and Cy > Cy_1. Thus we have that Ny < Ny_1. The idea of the method is then to use large
sample sizes at the lower accuracy-cost discretizations, and correct with smaller and smaller
sample sizes as we move up on the levels £. The following theorem, whose proof can be found
in [1], gives a bound on the total cost of the MLMC estimator to achieve MSE< €2. In par-
ticular, the theorem shows that, asymptotically, as € — 0, the cost of the (optimally tuned)
MLMC estimator is always smaller than the cost of the single-level Monte Carlo estimator
(1), provided some assumptions on the decay of the weak and strong errors and increase of
the cost with respect to ¢ are satisfied:

are simulated using the same underlying noise, whereas Ye(n’ﬁ) —

Theorem 1: Let Y denote a random wvariable and let Y, denote the approrimation of Y
at level €. Let iy be a Monte Carlo estimator of E[Yy — Yy_1] based on Ny independent replicas
of Yo—Y;,_1, each with cost Cy and variance Vy. If there exist positive constants o, 3,7, c1, ¢, C3
such that o > %min(ﬂ,'y), and

i. [E[Y; —Y]| <127

ii. Elfig] =E[Yy = Y;1], Y1 =0,
iii. Vi < c9275¢,
iv. Cp < 327,

then there exists a positive constant c4 such that for any e < e~! there are values L and N,
for which the multi-level estimator

L
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has a mean squared error smaller than €2, with computational cost Cyryc given by

cae?, if B>,
E[Curmc] <  cae?[log(e)?, if B =1,
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2 Goals of the project

We would like to apply the MLMC algorithm for option pricing. We consider the underlying
SDE to follow a simple geometric Brownian motion described by

dS(t) = rS(t)dt + oSE)dW;, 0<t < 1, (6)

with S(0) = 1,7 = 0.05 and o = 0.2 and W; a standard Brownian motion. The idea then
is to investigate the expected payoff p = E[Y] for different types of options, namely, we will
investigate:

1) Asian option: Y1) = exp(—7) max(0, S — K), with
- 1

S = / S(t)dt.
0

2) Barrier call option: Y@ = exp(—r) max(0,S(1) — K)ll{maxte[o 1) S(H)<Smaz}
for K = 1. Please address the following points:

(a) Give a sketch of the proof of the optimality of formulas (4) and (5) when Ny are treated
as real numbers.

(b) Implement a standard Monte Carlo estimator for payoff 1. To do so, approximate S as
S~h Zf\n/lzl Sm%sm_l where S = S(mh) (or an approximation of it) and M = 1/h is
the number of time steps.

Investigate how the bias and variance of your estimator scale with respect to h and
N. You can estimate the bias by comparing E[Yh(l)] with E[YQ(;)]. Use the same sam-

ple to estimate both expectations. Propose an adaptive algorithm to estimate E[Y(l)]
satisfying MSE(Y (1) < €.

(c¢) Consider now a 2-level MLMC, and again payoff 1. Estimate N; /Ny based on a pilot
run using two grids hy = 0.1 and hg = 0.2, considering that C; = 2Cy. Implement the
2-level MLMC and quantify the variance reduction obtained by i2'¢v! with respect to
the crude Monte Carlo estimator of point (b) with A = h; that has comparable cost.
What can you say about the bias of i>¢v¢! in comparison to that of the crude Monte
Carlo estimator of point (b)?

(d) We now move to a multi-level approach. Consider again payoff 1 and the hierarchy of
meshes hy, £ = 0,1,..., with by = 0.2 x 27¢, so that the unit costs are C; = Cy2°.
Moreover, assume that V; =: Var[Yl(l) - Yl(_lz]£V02_M, B=1,¢=1,2,...,L, and

E, = |IE[YZ(1) - Yf(_l)l]iEo2_o‘€, a = 1. Estimate Vj, Ey from a pilot run (i.e, from a
relatively small sample size at each level for the first few levels). Then, implement the
multi-level Monte Carlo estimator using (5) and choosing appropriately L and {N;}-
based on your estimated weak errors Fy and variances V; to achieve a MSE less than
2¢2. Compare the computational work required for the MLMC estimator to that of
a standard Monte Carlo estimator that achieves the same MSE for different tolerance

values e. Comment on the obtained results.



(e) Consider now the payoff 2 with S, = 1.5 and its approximation

2 _
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M =1/h, (7)

where {Sm}%zo are the values of the process at t,, = mh. Repeat the previous point,
estimating o and 8 numerically using the first few levels. Report a and § and comment
your results.

(f) Consider now a higher strike price K = 2 and Sy,q, = 2.5. For each of the two payoffs,
compute a (crude) Monte Carlo estimator of E[Y]. Propose and implement a Variance
Reduction Technique (VRT) for such an estimator and report your results. Can this
VRT be used in the context of MLMC as well?
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