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MCMC on manifolds
This project concerns the construction of MCMC methods to sample from probability distri-
butions that are concentrated on manifolds of a Euclidean space defined implicitly as subsets
of the zero-level set of a function.

Introduction
Many models arising in science and engineering can be understood as constrained systems.
In such problems, the space of accessible configurations is lower-dimensional than the space
of variables which describe the system, often forming a manifold embedded in the full config-
uration space.

One may then be interested in sampling a probability distribution defined on the manifold,
or calculating an integral over the manifold. The goal of this mini-project is to construct an
MCMC algorithm that is able to sample a target distribution on a d-dimensional manifold M
described by equality and inequality constrains, which is embedded on a larger da dimensional
Euclidean space. More formally, let

M =
{
x ∈ Rda such that qi(x) = 0, i = 1, 2, . . . ,m, and hj(x) > 0, j = 1, 2, . . . , l

}
(1)

be a d-dimensional manifold embedded on an ambient space Rda (with da > d), subject to m
equality constrains, described by m continuously differentiable functions qi(x), i = 1, 2 . . .m,
and l inequality constrains, described by l functions hj(x), j = 1, 2, . . . , l. Furthermore, denote
by Gx the matrix whose columns are the gradients {∇qi(x)}mi=1, which is assumed to have
full-rank m at any x ∈ M hence the manifold has a dimension d = da −m. Lastly, let Tx be
the tangent space to M at x ∈ M. Let us denote the target measure on the manifold by

ρ(dx) =
1

Z
f(x)σ(dx),

where, σ(dx) is the d-dimensional surface area measure, and f is a given (unnormalized)
probability density function defined on the manifold. Our goal is then to sample from ρ(dx)
and compute integrals of the form

I =

∫
M

g(x)σ(dx) = Z

∫
M

g(x)

f(x)
ρ(dx)

for some σ-integrable function g : M 7→ R. We assume here that f(x) 6= 0 whenever g(x) 6= 0.
To that end, we need to generate samples xn ∈ M, n = 0, 1, . . . , N, distributed as ρ. This
can be done by the MCMC algorithm proposed in [1], which we describe in what follows:
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Given a current state xn of the chain, the MCMC algorithm first proposes a tangential
move to a state xn + v, with v ∈ Txn, which is then followed by a projection back to y ∈ M,
that can be written as y = xn + v + w, with w ⊥ Txn.

The algorithm
The MCMC algorithm iteratively repeats the following procedure:

1. Proposal: Given some state xn, the proposal process begins with a tangential move
xn → xn + v, with v ∈ Txn . We generate v ∼ p(·|xn) using an orthonormal basis
for Txn , which is the orthogonal complement of the columns of Gxn . This orthogonal
complement basis can be found, for instance, using the last d columns of the da × da
matrix Q in the full QR factorization of Gxn .

1.1 Projection: Given xn and v, the projection step looks for some w ⊥ Txn , such
that y = xn + v + w satisfies all the equality constraints. It does so by finding an
m-dimensional column vector a, and setting w =

∑m
j=1 aj∇qj(xn) = Gxna such

that a solves
qi(xn + v +Gxna) = 0, i = 1, 2, . . . ,m.

This can be done using any non-linear equation solver. If such a solution w can be
found, we set as a proposal y = xn + v + w and advance to 1.2. Othewise, we set
xn+1 = xn as the new state of the chain. This procedure is depicted in Figure 1.

1.2 Check inequality constrain: Check if any constrain is violated, that is, check if
hi(y) ≤ 0 for some i. If so, reject y and set xn+1 = xn. Otherwise, advance to 1.3.

1.3 Check for lack of reversibility: In order to satisfy the detailed-balance con-
dition (i.e., reversibility of the chain), we need to verify that we can propose xn
starting from y. To that end, we need to find v′ ∈ Ty and w′ ∈ T ⊥

y such that
xn = y+ v′ +w′. Such w′, v′ always exist uniquely and are given by the projection
of xn − y onto Ty and T ⊥

y , respectively; they can be computed using the QR de-
composition of Gy. However, one needs to verify that the non-linear solver would
find xn starting from y + v′. If it doesn’t (in a given number of steps nmax), y is
rejected and we set xn+1 = xn. Otherwise, we continue to step 2.

2. Acceptance-rejection step We set xn+1 = y with probability α(xn, y), with

α(xn, y) = min

{
1,

f(y)p(v′|y)
f(xn)p(v|xn)

}
, (2)

otherwise, we set xn+1 = xn.
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Figure 1: Illustration of the proposal mechanism. In (a), the vector v ∈ Tx is projected
orthogonally to Tx to a point y = x+ v + w ∈ M. The reverse step is presented by (b).

Goals of the project
(a) Show that the described algorithm generates a reversible Markov chain. Hint: See [1,

Section 2.2].

(b) Consider a torus T2 embedded in R3, implicitly defined by

T2 :=

{
(x, y, z) ∈ R3 such that

(
R−

√
x2 + y2

)2
+ z2 − r2 = 0

}
, (3)

where R, r > 0 and r < R, and the uniform measure ρ(dx) = 1
Zσ(dx) (i.e., f = 1).

Implement the algorithm described in the previous section with R = 1 and r = 0.5, and
a Gaussian proposal p(·|xn) = N (0,Σ), (with suitable Σ) to obtain N = 106 samples
xn ∈ T2, n = 1, 2, . . . , N . Describe, in particular, the construction of the covariance
matrix Σ. Verify the accuracy of your implementation by plotting the points {xn}Nn=1

obtained by the sampler.

(c) Based on the generated chain {xn}Nn=1, estimate the moment of inertia, in the x direction
given by

I =

∫
T2

x2σ(dx) = Z

∫
T2

x2ρ(dx), (4)

with Z = 4π2rR. Estimate the sample size N needed to achieve a root mean squared
error smaller than a prescribed tolerance tol. Describe the method you use for the error
estimation. Monitor the convergence of your estimator.

(d) An explicit parametrization of T2 is given by

T2 := {[(R+ r cos(ϕ)) cos(θ), (R+ r cos(ϕ)) sin(θ), r sin(ϕ)] : θ, ϕ ∈ [0, 2π]} . (5)

Exploit this to construct a Monte Carlo estimator of I and compare its efficiency with
that of the estimator in the previous point.
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(e) We now consider the more interesting example of sampling from the special orthogonal
group SO(d) with uniform distribution. We view SO(d) as the set of d × d matrices,
x ∈ Rd×d that satisfy the following 1

2d(d + 1) row orthonormality constraints for k =
1, . . . , d and l > k

qkk(x) =

d∑
m=1

x2km = 1, qkl(x) =

d∑
m=1

xkmxlm = 0. (6)

Choosing f(x) = 1, implement the manifold MCMC algorithm to obtain 106 samples
from SO(d) with d = 11. Notice that any x satisfying (6) has det(x) = ±1. The
set with det(x) = 1 is connected. It is possible that the sampler would propose an x
with det(x) = −1. In this case, this proposal should be rejected. It is known that the
distribution of T = Tr(x) converges to a standard normal as d → ∞. As suggested in
[1], one can use this fact to assess the correctness of the manifold MCMC algorithm.

(f) Could you imagine an altenrative way to generate an i.i.d. sample from the uniform
distribution on SO(d)? How would it compare in terms of efficiency with the algorithm
in point (e)?
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