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Bayesian inverse problems in large dimensions

1 Introduction and background

Consider the problem of finding a set of parameters ¢ € RY from some measured data y € R”,
such that the following relation holds:

y=G(§) +n. (1)

In the previous equation, G is a given “observation operator” (i.e a smooth, non-necessarily
linear, map from ¢ to y), and 7 is some additive random noise polluting the observations.
For instance, G may involve some differential equation and return the solution observed at
certain locations in space and time, whereas £ may represent some parameter in the equation
we want to infer from observed data. For simplicity we will assume that the noise is Gaussian
of the form n ~ N (0,C,). Adopting a Bayesian perspective, we treat { as random variables.
Using Bayes theorem, the probability distribution of £ given y, 7(£|y) is given by

r(yl€)mol€)

w(€) = n(ely) = "

(2)
In the previous equation, 7(§) is called the posterior distribution, m(y|) is called the likelihood,
mo(€) is called the prior and 7(y) is called the evidence. In the particular case of model (1)
with 1 an additive Gaussian noise, we can write the likelihood as:

m(yl§) = N(G(E), Cy). 3)

The Bayesian approach allows us to include any prior information on ¢ into the prior dis-
tribution mo(€). Since the evidence 7(y) is usually not known and the posterior m(£|y) may
have a complex form, we resort to Markov Chain Monte Carlo methods, which do not need
knowledge of the normalizing constant 7(y).



1.1 Bayesian inference for log permeability
In this project, we consider the following model

= <e“<x@;;p<x;£>> =0, p(0;6) =0, p(1;e) =2, weo,1], (4)
P

u(x, &) = \7/? ka sin(kmz), (5)
k=1

describing the pressure (hydraulic head) distribution in a 1D underground aquifer with spa-
tially varying permeability field k(z) = e*(*£). The log-permeability u(z,¢) is parametrized
by the set of coefficients & = (£1,...,£6p) € RP| which we want to infer from available noisy
measurements of the pressure in 4 locations along the aquifer:

y; =p(0.25;6) +n;, j=1,...,4, n; ~N(0,0°) i.i.d, (6)

in a Bayesian perspective. The model (5) can be thought of as a sine-series expansion of
the log-permeability, thus recasting the inference problem on the Fourier coefficients £ =
(&1,...,&p). For computational purposes, the series needs to be truncated at the P-th term.
The goal of this project is to understand the influence of the truncation level P in the perfor-
mance of MCMC algorithms to explore the posterior distribution, particularly when P — oc.
The likelihood of the data is given by
1 ly — GO
wle) = e (L5, @

where | - | is the Euclidean norm, G(§) = (p(0.2;¢),...,p(0.8;¢)) and we consider as prior
distribution a multivariate normal:

P
- o i f-2 - = ! Sia
70 =N(0,0), C = diag{k™2, k € N}, ie, m(&1,...,Ep) = e, Va2 P (;2 '
(8)

The data y for this project is given in Table 1 and the noise level and distribution is known
and given by 7 ~ N (0,02I), with o = 0.04.

z 0.2 0.4 0.6 0.8
y(z;€) | 0.5041 | 0.8505 | 1.2257 | 1.4113

Table 1: Measured data.

In this project we focus on Metropolis-Hastings algorithms and will consider and compare
different proposals, studying in particular their performance when P increases. We will use
the effective sample size (ESS) as a metric for comparison. Recall that for a scalar function
£ — f(§) € R and a stationary process {&, }nez, the effective sample size is given by

-1

ESS = ESS(N, f.{&.})0) = N |1+2 " Corr(f(&), f(€))| 9)

n>0

where NV is the length of the generated Markov chain.



Remarks on implementation
Equation (4) has a closed form solution given by

plz) = 2‘;§6_§ where 5, (f) = /0 " f(w)dy. (10)

To evaluate it, discretize the interval [0, 1] into M sub-intervals of size h. The numerical in-
tegration can be done using the composite trapezoidal rule (you can use for instance Scipy’s
scipy.integrate.trapz or scipy.integrate.cumtrapz). For a given chosen spatial reso-
lution it makes sense to truncate the series expansion in (5) to P = M/2. This implies that
the higher the spatial resolution, the higher will be the size of the vector &, i.e, the dimension
of the state space.

2 Goals of the project

(a) Random walk Metropolis. Implement the random walk Metropolis (RWM) algo-
rithm for the problem discretized in the previous section using a proposal of the form
Q&) =N (5, SQC) for different values of s < 1, where C' is the same covariance ma-
trix as in (8). Run a chain of length N = 10* for different values of M, and P = M/2.
Evaluate your results in terms of mixing of the chains and ESS when taking f = & in
Eq. (9). Include traceplots of f and plots of the autocorrelation for each value of P.
Explain your results.

(b) Improving on RWM: preconditioned Crank-Nicholson (pCN). An improve-
ment over the standard random walk metropolis algorithm in large dimensions is the
preconditioned Crank-Nicholson (pCN). In this case, the proposal distribution is

Q& )=N (\/ 1—s2 ,320> , (11)

for some s < 1. Implement a Metropolis-Hastings MCMC algorithm using this proposal.
Repeat the experiments in the previous point and compare the performances of pCN
and RWM.

(c) On some theoretical understanding. Prove the following points:

(c1) Let pas denote the numerical approximation of (10) on a grid {z) = k/M, k =
0,...,M} and ¢ € R, Deduce that the likelihood 7/ (y|€) is bounded from above
and from below away from zero, uniformly with respect to M and &.

(c2) Show that the proposal Q(,-) in Eq. (11) is in detailed balance with the prior 7.
Exploit this fact to deduce that the Metropolis-Hastings acceptance rate for the
pCN algorithm can be written as

a(€m) :mm{l,m}

and there exists § > 0 independent of M such that

alén) > B VEneRP.



(c3) (Optional) Consider the Random Walk Metropolis algorithm and the total accep-
tance rate when being at a given state & € RF

@*(©) = [ ale.n)Q(E.dn)

with Q(¢,-) = N(€,52C). You can try to prove that

/ " (&)mo(&)dE — 0 as P — oo.
RP

(Hints: for & = (&1,...,&p) and n = (m1,...,np), split the integration domain
into Q = {>°, &k* > >, n7k*} and its complement. Perform then a change of
variables xp = k(&x—nk), yr = k& Exploit the fact that xy, yx, thought as random
variables, are all iid standard normals.)

(d) Laplace’s approximation. Another idea to construct a good proposal for MCMC is
to use Laplace’s approximation, i.e, to set the proposal distribution ) to be a normal
N (émap, H~1), where Emap 1s the maximum a posteriori point, i.e,

gmap = arg 5121%&1113 (_ IOg 77(5))

and H~! is the inverse of the Hessian H of —logm(£) evaluated at &map. An ap-
proximation of these quantities can be obtained by standard Python optimization li-
braries (see BFGS on the Scipy optimization reference). Notice that the BFGS al-
gorithm provides a low-rank approximation H of the Hessian H. In practice, we set
Q = N(&map: (fI + a?I)71), for some o > 0. Once such a proposal is constructed,
an independent sampler Metropolis algorithm can be implemented. Run the same
experiments as in points (a) and (b) and compare your results in terms of ESS vs
dimensionality. Explain your results.

(e) Use any of the previously discussed MCMC methods to estimate the posterior expecta-
tion E;[q] of the following scalar quantity of interest ¢(§) = fol e"®8) dz. Monitor the
convergence of the Markov chain and estimate the error of your MCMC estimator.

(f) Suppose now many more pressure observations are available

J .
yj=p<407§> +n; j=1,...,39.

You can generate the observations yourself by taking one realization of £ from the prior
mo and one realization of the noise 7; ~ N(0,0'nggxgg), with ¢ = 0.04. How do the
performances of the previous algorithms change in this case? Comment the results you
obtain.
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