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Importance Sampling by Optimal Control in Option Pricing

1 Introduction and background
Importance sampling is a popular variance reduction technique used to estimate the proba-
bility of rare-events. In practice, by performing a change of measure, one would like to render
such rare events more likely to occur in order to estimate more efficiently their probability.

This project investigates how to choose in an efficient manner this importance measure in
the context of option pricing. We assume that the underlying asset satisfies the Stochastic
Differential Equation (SDE){

dS(t) = b(t, S(t))dt+Σ(t, S(t))dW (t) t ∈ (0, T ]

S(0) = S0,
(1)

where W (t) denotes a standard one-dimensional Wiener process. The price of a derivative
written on (1) reads

Z = E[ψ(S(T ))], (2)

where ψ : R+ → R is the payoff function and can be approximated using Monte Carlo (MC)
techniques, namely, by simulating N trajectories S(1), ..., S(N) of (1), an estimator of Z is
directly obtained as

Ẑ =
1

N

N∑
i=1

ψ(S(i)(T )). (3)

1.1 Optimal Importance measure as the solution of an optimal control
problem

Following section 2.2 of [1], we look for an optimal change of measure by performing a mean-
shift on the Brownian motion by a control term ζ : [0, T ]× R → R that transforms the SDE
(1) in

{
dSζ(t) = [b(t, Sζ(t)) + Σ(t, Sζ(t))ζ(t, Sζ(t))]dt+Σ(t, Sζ(t))dW (t) t ∈ (0, T ]

Sζ(0) = S0.
(4)
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In practice, the sample paths of Sζ are shifted toward the regions of interest by the control
term ζ(·, ·). The quantity of interest (2) can then be rewritten as

Z = E[ψ(S(T ))] = E
[
ψ(Sζ(T )) exp

{
− 1

2

∫ T

0
|ζ(t, Sζ(t))|2dt−

∫ T

0
ζ(t, Sζ(t))dW (t)

}]
. (5)

It turns out that by solving the following Partial Differential Equation (PDE):{
∂v
∂t (t, s) + b(t, s)∂v(t,s)∂s + 1

2Σ
2(t, s)∂

2v(t,s)
∂s2

= 0 (t, s) ∈ [0, T )× R+

v(T, s) = |ψ(s)| s ∈ R+,
(6)

which corresponds to the Kolmogorov Backward Equation associated with the SDE (1), and
computing ζ?(t, s) = Σ(t, s)∂log[v(t,s)]∂s one obtains an estimator Ẑ(ζ?) that has zero variance
if ψ ≥ 0 and otherwise has minimal variance i.e. the transformation in the SDE (4) realizes
the optimal importance sampling measure. However, computing ζ? requires the solution of
the PDE (6), which is not known in closed form, in general. On the other hand, approximate
solutions of (6), may be sufficient to obtain substantial variance reduction.

2 European Call Option, general background
We consider a European Call option for which ψ(S(T )) = e−rT (S(T ) −K)+, where (x)+ =
max(x, 0) and we use the Black and Scholes model for the asset price (1):{

b(t, S(t)) = rS(t)

Σ(t, S(t)) = σS(t),
(7)

where r is the interest rate and σ is the volatility. Under this formulation, (1) admits the
solution

S(t) = S0e
(r−σ2

2
)t+σW (t), (8)

and a closed form expression for Z = E[e−rT (ST −K)+] is available (Black-Scholes formula):

Z = S0Φ[d1]− e−rTKΦ[d2], (9)

where Φ[·] is the cumulative distribution function of a standard Gaussian r.v. and{
d1 =

log[S0/K]+(r+σ2/2)T

σ
√
T

d2 = d1 − σ
√
T .

(10)

Despite the availability of a closed-form solution for the price of a European Call option, in
this project we consider an Euler-Maruyama (EM) approximation of the asset price dynamics:

Sm+1 = Sm + b(tm, S
m)∆t+Σ(tm, S

m)∆Wm, (11)

where Sm approximates S(tm), with {tm = m∆t}Mm=0 an equispaced grid in [0, T ], and
∆Wm = W (tm+1) −W (tm) is the Brownian increment. Our goal is to approximate Z∆t =
E[ψ(SM )]. Notice that Z∆t will be close to Z for ∆t small enough.

Likewise, we consider an Euler-Maruyama (EM) discretization also for the modified dy-
namics (4) for importance sampling:

Sm+1
ζ = Sm

ζ + [b(tm, S
m
ζ ) + Σ(tm, S

m
ζ )ζ(tm, S

m
ζ )]∆t+Σ(tm, S

m
ζ )∆Wm, (12)

where Sm
ζ is the numerical approximation of Sζ(tm).
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2.1 Importance sampling for European Call options

Address the following points:

1. Given an interest rate r = 5%, maturity time T = 0.2, initial asset price S0 = 100 and
strike price K = 120, simulate the trajectories of (1) with the EM discretization based on
M = 100 subintervals. Compute Z∆t with a crude MC estimator and compare the value
you obtain with the exact solution (9). Try different samples size N ∈ 10, 100, 1000, ...,
what do you observe?

2. Consider the implementation of an Importance Sampling (IS) strategy to approximate
Z∆t, where the importance distribution is constructed by modifying the interest rate r
to r̃ in the dynamics (11). Justify your choice of r̃ and quantify the variance reduction
obtained.

3. Implement now an adaptive strategy to find the optimal r̃ based on variance minimiza-
tion. Fix a threshold for the half-width of a confidence interval at level 1 − α and
iteratively adjust the values of r̃ and increase the sample size N until you achieve the
desired tolerance. Compare the previous results with this strategy and quantify the
variance reduction obtained.

4. Approximate the solution of equation (6) and compute ζ?.
Plot ζ? on the domain t ∈ [0, 0.18], s ∈ [S1, S2], where S1 = S0 exp{(r−0.5σ2)T−3σ

√
T}

and S2 = S0 exp{(r − 0.5σ2)T + 3σ
√
T}. Can you interpret the shape of the control

inside this domain?
Simulate now (12) using the obtained optimal control ζ? and approximate Z∆t by impor-
tance sampling. Compare the variance reduction obtained with respect to the previous
points. Test different levels of space and time discretization of the PDE. How is the
variance reduction affected by the discretization size? Is your estimator unbiased?
Guideline: We recommend solving the PDE (6) with a finite-difference scheme, dis-
cretizing implicitly the time variable and using centered finite differences for the first
and second order derivatives with respect to the asset price.
The asset domain has to be truncated; we suggest solving the PDE in the domain
s ∈ [Smin, Smax] with Smin = S0 exp{(r − 0.5σ2)T − 6σ

√
T} and Smax = S0 exp{(r −

0.5σ2)T+6σ
√
T}. Two meaningful boundary conditions are v(t, Smin) = 0 and v(t, Smax) =

Smax − K exp{−r(T − t)} for t ∈ [0, T ]. As discretization step you can take ∆s =
(Smax − Smin)/P and ∆t = T/M̃ . Start with P = 50 and M̃ = 30 and monitor the
variance reduction as you refine the grid. ζ?(t, s) can be computed by a forward/back-
ward finite difference approximation of ∂[log(v(t,s))]

∂s = 1
v(t,s)

∂v(t,s)
∂s . Since the solution of

the PDE is set to zero on the line (0, T )× {Smin}, the control may diverge there. Pro-
longate here the values assumed by the control on (0, T )× {Smin +∆s}. Similarly, the
control can be set to zero on the line {T}×(Smin, Smax) since, due to the Forward Euler
type discretization (12), it will not affect the asset price. To simulate the controlled
trajectories you may need to evaluate the optimal control outside of the grid-points
of your finite-difference discretization of the PDE. We suggest considering a piecewise
linear interpolation in the domain [0, T ] × [Smin, Smax] and extending constantly the
control outside of this domain.
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2.2 Up-and-out European Call option

We consider now the path-dependent discounted payoff corresponding to an up-and-out Eu-
ropean Call option:

ψ({S(t)}t∈[0,T ]) = (S(T )−K)+e
−rT I{ max

t∈[0,T ]
S(t)≤U}, (13)

where U > 0 is an externally given barrier and IA is the indicator function the set A.
We start considering the following set of parameters: T = 0.2, K = 150, U = 200,

S0 = 100. We discretize (1) and (4) through EM with a time-step ∆t = T/M and M = 1000
and we monitor the value of the process only at discrete time instants ti = i∆t for i = 0, ...,M .
Thus, the quantity to compute is Z∆t = E[ψ(SM )I{ max

m=0,...,M
Sm≤U}].

1. Use a crude MC estimator to compute the price Z∆t using different sample sizes and
comment your results.

2. Consider the implementation of an importance sampling strategy. Repeat point 3 of
section 2.1 in this new framework. Quantify the variance reduction obtained.

3. We now consider the solution of the equation (6) with this new payoff.
Use a numerical scheme to solve the PDE (6) with final condition v(T, s) = (s−K)+e

−rT

and the following boundary conditions:{
v(t, Smin) = 0 for t ∈ [0, T )

v(t, Smax) = ε for t ∈ [0, T ),
(14)

where Smax = U and Smin follows the same specification as in point 4 of section 2.1
while ε = 0.1 is used to avoid numerical instabilities close to the boundary. Notice
that, while the boundary condition v(t, Smin) = 0 arises from the nature of the call
option, the boundary condition v(t, Smax) allows us to take the barrier into account
while solving for (6). Compute the optimal control ζ? and, as in section 2.1 point 4,
replace the values taken by the control on (0, T ) × {Smin} with the values it assumes
on (0, T ) × {Smin +∆s}. Similarly, force to zero the control at the final time instant.
Simulate N = 100 sample paths of Sζ according to (12) (as before, interpolate linearly
the control inside the domain in which you solved the PDE and extend it constantly
outside). Plot the obtained sample paths and comment on what the control action
is doing. Finally, compute the option price Z∆t by importance sampling using the
modified dynamics (12) with ζ?. Try different sample sizes and comment on the variance
reduction obtained.

4. Repeat the previous points with U = 170. In particular, solve the PDE (6) with the
following discretization: P = 3000, M̃ = 1500. What do you notice?
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