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Hamiltonian Monte Carlo

Introduction and background

A common shortfall of the simple random walk Metropolis proposal in the Metropolis-Hastings
algorithm is the slow exploration rate of the state space. Much effort has been devoted in
recent years to devise proposals with more efficient exploration rates (i.e “distant” proposals).
One idea borrowed from physics, which, can be applied to most problems with continuous
state space, is to introduce a “fictitious” Hamiltonian dynamics and “fictitious” momentum
variables.

We recall that a Hamiltonian dynamical system is characterized by a Hamiltonian function H :
Rd ×Rd → R, H = H(q, p), that is conserved during dynamics. Here q = (q1, . . . , qd) denotes
the position vector and p = (p1, . . . , pd) denotes the momentum vector. The Hamiltonian
dynamics is governed by the equations

dqi
dt

=
∂H

∂pi
(1)

dpi
dt

= −∂H

∂qi
(2)

for i = 1, . . . , d. In general, the above equation can be understood as a conservation of the
total energy of a system in time.

Hamiltonian Monte Carlo takes inspiration from the previous physical system in order to
construct a Markov Chain Monte Carlo algorithm with a given invariant density π(q) on the
position variables (q1, . . . , qd). To do so, we introduce the potential energy U(q) = − log π(q),
a kinetic energy K(p) =

∑d
i=1

p2i
2mi

, for some mass parameters mi, i = 1, . . . , d, and the
Hamiltonian H(q, p) = U(q)+K(p). Having introduced these functions, we can then simulate
a Markov chain in which each iteration re-samples the momentum, evolves the Hamiltonian
system for a certain time, and then performs a Metropolis-type acceptance-rejection step on
the new position vector. More concretely, we consider the so-called Gibbs distribution, given
by

G(q, p) =
1

Z
exp(−H(p, q)),

where Z is the (unknown) normalizing constant. Notice that such a Gibbs distribution nat-
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urally factorizes as:

G(q, p) =
1

Z̃
exp(−U(q))

1∏d
i=1

√
2πmi

exp(−K(p)),

where 1
Z̃
exp(−U(q)) is the probability density we are interested in sampling from, whereas

exp(−K(p))∏d
i=1

√
2πmi

is a multivariate Gaussian distribution N(0,M) with M = diag(m1, ...,md). Given
the state qn at iteration n, the idea of the algorithm is then to sample a momentum vector
pn from N(0,M), and compute H(qn, pn). The Hamiltonian system is then evolved starting
from q(0) = qn, p(0) = pn, on a time interval [0, T ] using equations (1), and (2) for some
arbitrary final time T , to obtain (q(T ), p(T )), where, in general, q(T ) 6= q(0). This state
is then taken as the proposal state in a Metropolis-Hastings step to generate the new state
qn+1. For many problems of modern relevance, it is not possible to compute the dynamics
exactly and numerical discretization is needed. A convenient time discretization scheme is
the Verlet’s method: the time interval [0, T ] is divided into Nt intervals of size ε > 0 and for
each particle i the position qi and momemtum pi are updated as follows

pi(t+ ε/2) = pi(t)− (ε/2)
∂U(q(t))

∂qi

qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi
(3)

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U(q(t+ ε))

∂qi
.

The main steps of the Hamiltonian Monte Carlo algorithm using Verlet’s method are outlined
in Algorithm 1. There, N is the length of the chain, ε the time step in Verlet’s method, and
T the final integration time.

Algorithm 1 Hamiltonian Monte Carlo
1: For n = 1, . . . , N , do:

2: Sample new values for the momentum variables,

pni ∼ N (0,mi), i = 1, . . . , d

3: Given the current state (qn, pn), propose a new state (q∗, p∗) by evolving the

Hamiltonian system (1), (2) using Verlet’s method.

4: Set qn+1 = q∗ with probability α, where

α = min [1, exp (−U(q∗) + U(qn)−K(p∗) +K(pn))]

otherwise, set qn+1 = qn.

5: end For

Notice that, similar to the random-walk Metropolis, this algorithm depends on few pa-
rameters, namely, ε, T , and mi, which should be properly tuned.
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Goals of the project

(a) Show that the Hamiltonian is preserved by the dynamics (1)-(2), i.e, dH
dt = 0 along a

trajectory.

(b) Suppose you could evolve the Hamiltonian system exactly without a need for a numerical
discretization. How does the acceptance rate in Algorithm 1 look like in this case? Now,
suppose we can’t evolve the Hamiltonian exactly, and we have to use Verlet’s method
to numerically approximate the time integration. Does your answer to the previous
question change?

(c) Suppose the time integration is being carried-out exactly, i.e., there is no numerical
error. Prove that the HMC algorithm leaves the Gibbs distribution invariant. Conclude
that if q0 ∼ π(q), then, qk ∼ π(q) for all k. Hint: See Theorems 2.3 and 5.1 in [1]. Can
you show the same when the Verlet’s method is used to discretize the dynamics?

(d) Consider the problem of sampling from a distribution π with unnormalized density

f1(q1, q2) = e−α(q21+q22−
1
4
)2 .

Test both cases α = 10 and α = 103. Implement a random walk Metropolis algorithm
to sample from said distribution. Implement a HMC sampling scheme using Verlet’s
method for different values of ε,m1,m2, T . Discuss your results. Moreover, compare
your results in terms of autocorrelation of the chains obtained with each method and
in terms of effective sample size vs number of evaluations of f and ∂f/∂qi, i ∈ {1, 2}.

(e) We consider a logistic regression model P(yi = 1|xTi q) =
[
1 + exp(−xTi q)

]−1, where
yi is the binary response for the ith subject i = 1, . . . , n and y = (y1, . . . , yn) is the
vector of responses for all subjects. The co-variate values for the ith subject are xTi =
(xi,0, . . . , xi,p). The full design matrix is written as X = (xT1 ; . . . ;x

T
n ) ∈ Rn×(p+1). The

regression coefficients for the p+1 covariates are given by a vector q = (β0, . . . , βp)
T . The

un-normalized log-posterior for this model, with Gaussian prior N(0,diag(σ2
0, . . . , σ

2
p))

on q can be written as

log f(q|y,X, σ2
q ) = qTXT (y − 1n)− 1Tn

[
log(1 + exp(−xTi q))

]
n×1

− 1

2

p∑
i=0

q2i
σ2
i

, (4)

where 1n indicates an n-dimensional vector of ones,
[
log(1 + exp(−xTi q))

]
n×1

indicates
an n × 1 vector ∀i = 1, . . . , n, and Ip+1 indicates the identity matrix in Rp+1. We
analyze data of 189 births at a U.S. hospital to examine the risk factors of low birth
weight (y = 1 if low weight, y = 0 otherwise). The data is available on the course
website and is taken from [4] (Table 1.6). We construct a model by setting xi,0 = 1,
and letting the remaining covariates xi to indicate mother’s age in years, xi,1, mother’s
weight in pounds at last menstrual period xi,2, race xi,3 (African-American) xi,4 (other
race), smoking during pregnancy, xi,5, premature birth, xi,6, hypertension, xi,7, presence
of uterine irritability, xi,8, one physician visit during the first trimester, xi,9, and two
or more physician visits during the first trimester, xi,10. Implement an HMC sampler
to perform the logistic regression on q. Choose suitable values for the prior covariance.
Monitor the convergence of your algorithm. Present histograms of your coefficients.
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(f) Consider now the task of computing the posterior expectation of q in the logistic re-
gression problem of the previous point. Compare the performance of HMC with that of
another method of your choice.
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