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Stochastic simulation of epidemic models

This mini-project concerns stochastic simulation of epidemic models. There are multiple
advantages of considering stochastic models over their deterministic counterparts in epidemi-
ology. First, the insurgence of a contagion when two or more individuals are in contact seems
to be better described as a probabilistic rather than a purely deterministic process. Second,
it is difficult in deterministic models to admit the possibility of the sudden extinction of the
epidemic or the possibility of a minor epidemic outbreak. On the other hand, stochastic mod-
els can naturally estimate quantities such as the probability of extinction or the probability
that the epidemic lasts longer than a certain time.

1 Introduction and background

Let us consider a closed population of size N partitioned into three non-overlapping classes:
S (susceptible), I (infectious) and R (removed). Assume that individuals in the I-class
are at the same time infected and infectious, i.e., they are able to transmit the disease to
susceptible individuals. Contagious contacts only can happen when an individual from the
S-class meets an infectious individual. Infected individuals recover after an exponentially
distributed random time and gain immunity to the disease, thus becoming individuals of
the R-class. In the model considered in this project we assume that immunity lasts forever;
that is, once individuals enter the R-class, they are no longer susceptible to the infection.
Since we are considering a closed population in this simple SIR model, the sum S + I + R is
constant in time and equals the total number N of individuals in the population. Therefore,
we just need to keep track of the sizes of S and I classes. Denote by (s,i) € N? the number
of susceptible (s) and infected (i) people at a given time. The (stochastic) SIR model can
be then modeled by the following discrete-state, continuous time Markov process {X(t) =
(S(t),1(t)) €{0,1,...,N}2, ¢t > 0} with transition probabilities:

P(X(t+dt) = (s,0) + (=1, 1)|X(t) = (s,i)) = Bsidt + o(dt)

P (X(t+dt) = (s,i) + (0, —1)| X () = (s,1)) = ~idt + o(dt), M)

where 3,7 € RT.
When N, S(t),1(t) > 1, are large, so that (S(¢), I(t))+(—1,1) ~ (S(¢), I(t)) and (S(t), I(t))+
(0,—1) =~ (S(t),I(t)), i.e., a single reaction changes very little the state, one can obtain the



so-called mean field approximation of SIR which can be written in differential form as

ds
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with (S5(0), 1(0)) = (So, Ip), where we assume here S(t),I(t) € RT™ Vt. A better approxima-
tion is given by the following diffusion approzimation of SIR:

dS = —BSH)I()dt — /BSHI()dWs
Al = (BS()I(t) — vI(t))dt + /BSOI(E)dWs — \/AI({E)AW;

with (5(0),1(0)) = (So,Io), and where Wg, Wy are two independent standard Wiener pro-
cesses.

A more realistic epidemic model, hereafter named SIR-d, takes into account demographic
effects, i.e., the death and birth of the population. Its mean field approximation is given by

(3)

%gznuﬂo+ﬂw+R@»—mﬂﬂ—ﬁﬂﬂﬂm
Sl = BSOI) —~1(1) ~ (m + )T (1), @)
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where m is the host death/birth rate and v is the pathogen-induced mortality rate. The
term that describes the birth of susceptible hosts, m(S + I + R), ensures that deaths due
to non-pathogen-related causes are balanced, and the total population (S + I + R) remains
constant over time, as long as there is no death due to the epidemic (expressed by —vI).
Thus, at any given time ¢, one of the following 6 processes a; can happen: (a;) host birth,
(a2) death of susceptible host, (a3) death of infected host, (as) death of recovered host, (as)
infection, (ag) Recovery.

Goals of the project

(a) We begin by comparing the dynamics generated by (1), (2) and (3). To that end,
consider a small population of N = 100 individuals and initial condition (Sp,ly) =
(99,1). Implement both the stochastic SIR (1), its mean field (2) and diffusion (3)
approximations for a time 7" = 10. In particular, simulate exactly the stochastic SIR,
and use suitable time discretizations for the mean field and diffusion models. Plot the
resulting trajectories. Run your simulations for § = 0.02 and v = 0.4.

(b) In the stochastic SIR model, the disease is considered extinct whenever I(t) = 0 for
some t € [0,7T]. Using the same setting as in the previous point, use the SIR model (1)
and a Monte Carlo approach to estimate the probability of extinction of the disease at
time T, that is, estimate P(I(t) = 0) for some ¢t < T'. Report your values for 7' = 1, 2, 10.
Choose appropriately the sample size to guarantee a relative error of 5%.



(c¢) Propose and implement a variance reduction technique for your previous estimate. Dis-
cuss your results. Test now your proposed method to estimate the probability of ex-
tinction at T' = 2, starting from the initial condition (Sy, Ip) = (95,5). Comment the
results and suggest possible improvements, if needed.

(d) Derive the formulation of the stochastic SIR-d process associated to (4). Hint: What
is the rate of each (a;), i =1,2,...,67

(e) Simulate then the SIR-d process and compare to its mean field approximation (4). Set
T =10, 3 =0.02, v = 0.4 and experiment with different values of m € [10~%,1073] and
v € [1073,1072]. Compare your results.

(f) In a deterministic model an epidemic will go extinct (i.e., I(t) — 0 as t — oo) if the
basic reproduction number, Ry of the infection, given by

p(5(0) + 1(0) + R(0))

Ry =
m—+v+y

)

is less than one. Consider the stochastic SIR-d model with demographic effects. Is
it possible that the epidemic will be extinct at a time 7' for Ry = 1.01,1.05,1.1,1.57
Consider a population of N = 100 individuals with R(0) = 0,.5(0) = 95,1(0) =5,m =
107%,v = 1072 and 8 chosen to obtain the previous values of Ry and estimate the
probability of extinction for T'= 1, 2, 10.
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