Appendix

A1 Standard Distributions

We give here a list of standard distributions, for the main purpose of introducing the terminology and parameterization used in the book. For a discrete distribution on \mathbb{N} , p(k) denotes the probability mass function and $\widehat{p}[z] \stackrel{\text{def}}{=} \sum_{0}^{\infty} z^k p(k)$ the probability generating function (p.g.f.). In the continuous case, f(x) is the density, $F(x) \stackrel{\text{def}}{=} \int_{-\infty}^{x} f(y) \, \mathrm{d}y$ the c.d.f., $\widehat{F}[s] \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} \mathrm{e}^{sy} f(y) \, \mathrm{d}y$ the m.g.f. (defined for any $s \in \mathbb{C}$ such that $\int_{-\infty}^{\infty} \mathrm{e}^{\Re s \, y} f(y) \, \mathrm{d}y < \infty$), and the cumulant function (c.g.f.) is $\log \widehat{F}[s]$.

The Bernoulli(p) distribution is the distribution of $X \in \{0,1\}$, such that $\mathbb{P}(X=1)=1$. Here the event $\{X=1\}$ can be thought of as heads coming up when throwing a coin w.p. 1 for heads. The binomial (n,p) distribution is the distribution of the sum $N \stackrel{\text{def}}{=} X_1 + \cdots + X_n$ of n i.i.d. Bernoulli(p) r.v.'s. The p.g.f.'s are $\mathbb{E}z^X = 1 - p + pz$, $\mathbb{E}z^N = (1 - p + pz)^n$.

The geometric distribution with success parameter $1 - \rho$ is the distribution of the number N of tails before a head comes up when flipping a coin w.p. ρ for tails, $\mathbb{P}(N=n) = (1-\rho)\rho^n$, $n \in \mathbb{N}$. Also N' = N+1, the total number of flips including the final head, is said to have a geometric $(1-\rho)$ distribution, and one has $\mathbb{P}(N'=n) = (1-\rho)\rho^{n-1}$, $n=1,2,\ldots$

The Gamma(α, λ) distribution has

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x > 0.$$

The m.g.f. is $(\lambda/(\lambda-s))^{\alpha}$, the mean is α/λ , and the variance is α/λ^2 . The Gamma $(1,\lambda)$ distribution is the exponential distribution with rate parameter λ , and the Gamma (n,λ) distribution with $n=1,2,3,\ldots$ is commonly called the $\mathrm{Erlang}(n,\lambda)$ distribution or just the $\mathrm{Erlang}(n)$ distribution.

The **inverse Gamma** (α, λ) distribution is the distribution of Y = 1/X where X has a Gamma (α, λ) distribution. The density is

$$\frac{\lambda^{\alpha}}{y^{\alpha+1}\Gamma(\alpha)} e^{-\lambda/y} . \tag{A1.1}$$

The inverse Gamma distribution is popular as Bayesian prior for normal variances (see, e.g., XIII.2.2).

The Inverse Gauss (c, ξ) distribution has density

$$\frac{c}{x^{3/2}\sqrt{2\pi}} \exp\left\{\xi c - \frac{1}{2}\left(\frac{c^2}{x} + \xi^2 x\right)\right\}, \quad x > 0. \tag{A1.2}$$

The c.g.f. is $\xi c - c\sqrt{\xi^2 - 2s}$, the mean is c/ξ , and the variance is c/ξ^3 . The inverse Gaussian distribution can be interpreted as the time needed for Brownian motion with drift ξ to get from level 0 to level c. The distribution is also popular in statistics as a flexible two-parameter distribution (in fact, one of the nice examples of a two-parameter exponential family). An important extension is the NIG family of distributions; see XII.1.4 and XII.5.1.

The Weibull(β) distribution has tail $\overline{F}(x) = e^{-x^{\beta}}$. It originates from reliability. The failure rate is ax^b , where $a = \beta$, $b = \beta - 1$, which provides one of the simplest parametric alternatives to a constant failure rate as for the exponential distribution corresponding to $\beta = 1$.

The multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^d has density

$$\frac{1}{(2\pi)^{d/2}\mathrm{det}(\boldsymbol{\Sigma})^{1/2}}\exp\{-(\boldsymbol{x}-\boldsymbol{\mu})^\mathsf{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})/2\}.$$

The m.g.f. for d = 1 is $e^{\mu s - s^2 \sigma^2/2}$.

An important formula states that conditioning in the multivariate normal distribution again leads to a multivariate normal: if

$$egin{pmatrix} egin{pmatrix} oldsymbol{X}_1 \ oldsymbol{X}_2 \end{pmatrix} \; \sim \; \mathscr{N}\!\!\left(egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix}, egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix}
ight),$$

then

$$m{X}_1 \, ig| \, m{X}_2 \, \sim \, \mathscr{N} ig(m{\mu}_1 + m{\Sigma}_{12} m{\Sigma}_{22}^{-1} (m{X}_2 - m{\mu}_2), m{\Sigma}_{11} - m{\Sigma}_{12} m{\Sigma}_{22}^{-1} m{\Sigma}_{21} ig) \, .$$