
Stochastic Simulation
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 11 – 28 November 2024

Markov Chain Monte Carlo

Exercise 1
In many applications of interest, it is not uncommon to encounter the need for sampling from
a multi-modal distribution f . The theory developed so far can be directly applicable to these
types of distributions. However, in practice, sampling from these distributions using MCMC
can be computationally challenging, as we will investigate in this problem. Throughout this
exercise, we will consider the bi-modal distribution

f(x; γ, x0) =
e−γ(x2−x0)2

Z
, γ > 0, (1)

where Z is some normalizing constant. Depending on the values of γ and x0, designing a
sampling strategy to properly sample from (1) can become challenging. Intuitively, if both
peaks are too far apart, using a random walk Metropolis (RWM) might not work, as it
is possible for the sampler to get stuck on one of the peaks if the step-size is too small.
Conversely, a RWM with very large steps might tend to reject quite often, thus rendering
the whole sampling procedure inefficient. We begin by verifying this. Implement the RWM
algorithm using as proposal distribution q(x, y) = N (x, σ2) and target distribution f(x; γ, x0)
for γ = 1, x0 = 1, 4, 9, 25 and different choices of σ. Discuss the quality of your samples
by analyzing the trace-plots (one realization of the chain), autocorrelation functions and
histograms of the chains obtained.

Solution

An exemplary implementation of this problem is given at the end of the exercise. We im-
plement the sampler for different values of x0 and σ and show the results in Figure 1. As
we can see from figure 1, one both x0 and σ are of a similar magnitude (top row), then the
sampler is able to correctly explore the distribution. This is contrary to what happens in
the bottom row, where x0 is much larger than σ and as such, the sampler tends to get stuck
at one of the peaks of the distribution. This in turn can be fixed by increasing the size of
σ, as shown in figure 2. Notice here that for σ around 10, the chain has better mixing and
a more rapidly decaying auto-correlation plot, albeit the acceptance rate is 0.017, which is
quite small. In general, it is difficult to choose an appropriate σ to sample from this type
of multi-modal distributions when using random walk Metropolis. Some recent advances
to overcome this difficulty are the so-called Hamiltonian Monte Carlo, the delayed-rejection
Metropolis-Hastings, and the parallel-tempering algorithm. We refer the interested reader to
[2]

1

Figure 1: Results for σ = 1 and x0 = 1 (top) and x0 = 25 (bottom). The blue-shaded
part on the auto-correlation plot joins the boundaries of an approximate 95% interval for the
individual correlations.

2

Figure 2: Results for x0 = 25 and different values of σ, from top to bottom σ = 1, 4, 10, 16.
The blue-shaded part on the autocorrelation plot joins the boundaries of an approximate 95%
interval for the individual correlations.

Python code:

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.graphics.tsaplots as sm
import seaborn as sns; sns.set(color_codes=True)# Defines the pdf
sns.set(font_scale=2) #fontsize in plots
sns.set_style("white")

def f(x,x0,gamma=1):
return np.exp(-gamma*(x**2-x0)**2)

3

#defines the metropolis-hastings routine
def MH(sigma,x0):

N=10000
X=np.zeros(N)
X[0]=0;
px=f(X[0],x0)

for i in range(N-1):
y=X[i]+sigma*np.random.standard_normal(1)
py=f(y,x0)
px=f(X[i],x0)
if py/px > np.random.random(1):

X[i+1]=y
else:

X[i+1]=X[i]

plt.plot(X)
plt.gca().set_rasterized(True)
plt.title('Trace plots x0='+str(x0)+' σ='+str(sigma))
plt.savefig('../figures/Trace_plots_x0='+str(x0)+'sigma'+str(sigma)+'.png')
plt.show()

sm.plot_acf(X,lags=100)
plt.gca().set_rasterized(True)
plt.title('ACF x0='+str(x0)+' σ='+str(sigma))
plt.savefig('../figures/ACF_x0='+str(x0)+'sigma'+str(sigma)+'.png')
plt.show()

sns.kdeplot(X, shade=True, color="r")
plt.gca().set_rasterized(True)
plt.title('KDE x0='+str(x0)+' σ='+str(sigma))
plt.savefig('../figures/KDE_x0='+str(x0)+'sigma'+str(sigma)+'.png')
plt.show()

return X

Runs experiments
xx=np.array([1,25])
ss=np.array([1,4,10,16])

for i in range(len(xx)):
for j in range(len(ss)):

MH(ss[j],xx[i])

4

Exercise 2
Ideally, we would like to obtain (approximately) i.i.d samples from a target distribution f
using Markov Chain Monte Carlo (MCMC) algorithms. One practical way of doing so is
via sub-sampling (also called batch sampling), which is implemented to reduce or eliminate
correlation between the successive values in the Markov chain. That is, instead of considering
the entire chain {Xn : n ≥ 0}, say, this technique sub-samples the chain with a batch size
k > 1, so that only the values {Xkn : n ≥ 0} are considered. If the covariance Covf (X0, Xn)
vanishes as n → ∞, then the idea of sub-sampling is quite natural since Xkn and Xk(n+1)

can be considered to be approximately independent for k sufficiently big; estimating such
a k may be difficult in practice though. While sub-sampling provides a way of generating
(approx.) i.i.d. samples from f and may thus be useful assessing the convergence of a MCMC
method, it necessarily leads to an efficiency loss. Let {Xn ∈ Rd : n ≥ 0} be a Markov chain
with a unique stationary distribution f , and X0 ∼ f (i.e., the chain is at equilibrium). Take
φ : Rd → R such that Ef

(
|φ|2

)
< ∞ and consider two estimators for µ = Ef (φ), namely one

that uses the entire Markov chain (µ̂) and one based on sub-sampling (µ̂k) using only every
k-th value:

µ̂ =
1

Nk

Nk∑
n=1

φ(Xn) , and µ̂k =
1

N

N∑
n=1

φ(Xnk) .

Show that the variance of µ̂ satisfies Varf (µ̂) ≤ Varf (µ̂k) for every k > 1.

Solution

Let k > 1. Then define µ̂
(0)
k , µ̂

(1)
k , . . . , µ̂

(k−1)
k as the shifted versions of µ̂k, in the sense that:

µ̂
(j)
k =

1

N

N∑
n=1

φ(Xnk−j) , j = 0, 1, . . . , k − 1 .

Notice that the estimator µ̂ can then be written as:

µ̂ =
1

k

k−1∑
j=0

µ̂
(j)
k ,

so that the variance of µ̂ satisfies:

Varf (µ̂) = Varf

(
1

k

k−1∑
j=0

µ̂
(j)
k

)
=

Varf
(
µ̂
(0)
k

)
k

+
∑
i 6=j

Covf

(
µ̂
(i)
k , µ̂

(j)
k

)
k2

≤
Varf

(
µ̂
(0)
k

)
k

+
∑
i 6=j

√
Varf

(
µ̂
(i)
k

)
Varf

(
µ̂
(j)
k

)
k2

in view of the Cauchy–Schwarz inequality and the stationarity. The claim then follows form
the stationarity of the Markov chain again, indeed

Varf (µ̂) ≤
Varf

(
µ̂
(0)
k

)
k

+
∑
i 6=j

√
Varf

(
µ̂
(i)
k

)
Varf

(
µ̂
(j)
k

)
k2

=
Varf

(
µ̂
(0)
k

)
k

+
k − 1

k
Varf

(
µ̂
(0)
k

)
= Varf

(
µ̂k

)
.

5

Exercise 3
Let X ⊂ Rd and Pi : X × B(X) → [0, 1], i = 1 . . . ,m be a Markov transition kernels on X
with B(X) the associated σ−algebra.

(a) Given a1, . . . , am ∈ R+, such that
∑m

i=1 ai = 1, show that P (x,A) =
∑m

i=1 aiPi(x,A) is
a Markov kernel.

(b) Suppose that a measure π : B → [0, 1] is invariant for each kernel Pi. Show that it is
also invariant for P =

∑m
i=1 aiPi, where a1, . . . , am ∈ R+, such that

∑m
i=1 ai = 1. If

each Pi is reversible, is P reversible?

(c) Under the same assumptions for point (b), define the Markov operator Pi associated to
Pi (i.e., πPi =

∫
P (x, ·)dπ(x)). Then, show that π is also invariant for P = Pi1 ◦· · ·◦Pik ,

for any choice of i1, . . . , ik. If each Pi is reversible, for which choice of i1, . . . , ik is P
reversible?

Solution

(a) We need to verify that

1. ∀A ∈ B, P (·, A) is measurable.
2. ∀x ∈ X, P (x, ·) is a probability measure on (X,B(X)).

For the first we have that ∀A ∈ B(X), P (·, A) =
∑

aiPi(·, A) which is measurable as a
linear combination of measurable functions. Moreover, ∀x ∈ X, P (x, ·) =

∑
i aiPi(x, ·)

is a probability measure on (X,B(X)) since it is a convex combination of probability
measures. Notice, in particular, that P (x,X) =

∑
i aiPi(x,X) =

∑
i ai = 1.

(b) Each kernel Pi preserves π, that is∫
X
Pi(x,A)π(dx) = π(A), A ∈ B(X), ∀i = 1, . . . ,m. (2)

We have ∀A ∈ B(X)
∫
X P (x,A)π(dx) =

∑
i ai
∫
X Pi(x,A)π(dx) =

∑
i aiπ(A) = π(A),

hence P also preserves π.

(c) Note that, since πPi = π by assumption, we have πP = πPi1◦· · ·◦Pik = π. Furthermore,
if each Pi is reversible, then P = Pi1 ◦ · · · ◦ Pin−1 ◦ Pin ◦ Pin−1 ◦ · · · ◦ Pi1 is reversible.

Exercise 4
At every iteration of the general Metropolis–Hastings algorithm, a new candidate state Yn+1

is proposed by sampling Yn+1 ∼ q(Xn, ·), given the current state Xn. Here, q(x,y) is
the so-called proposal density. Consider now the case where the proposal does not depend
on the current state, that is q(x,y) ≡ q(y), so that the proposed candidate is Yn+1 ∼ q.
This particular Markov Chain Monte Carlo (MCMC) variant is sometimes called independent
Metropolis–Hastings algorithm with fixed proposal (or simply independence sampler). Let’s
denote the target density by f . As such, this MCMC variant appears very similar to the
Accept–Reject method for sampling from f (cf. Lab 02).

6

1. Suppose there exists a positive constant C such that f(x) ≤ Cq(x) for any x ∈
supp(f) = {x ∈ Rd : f(x) > 0}. Show that the expected acceptance probability of the
independent Metropolis–Hastings algorithm is at least 1

C whenever the chain is station-
ary. How does this compare to the expected acceptance probability of an Accept–Reject
method?

2. Let us compare the independent Metropolis–Hastings algorithm and the Accept–Reject
method in some more detail by an example. Specifically, the goal is to sample from
a Gamma distribution with shape parameter α and scale parameter β, denoted by
Gamma(α, β), so that the target PDF reads f(x) ≡ f(x;α, β) = βαxα−1e−βx/Γ(α)I{x≥0},
where Γ(·) denotes the Gamma function.

(a) Implement the Accept–Reject method to sample from Gamma(α, 1) for α > 1,
using the PDF of the Gamma(a, b) distribution with a = [α] as auxiliary density
(here [α] denotes the integer part of α).1 Show that b = [α]/α is the optimal choice
for b.

(b) Use your Accept–Reject method to generate m random numbers X1, . . . , Xm with
each Xi ∼ Gamma(α, 1), when using n = 5000 random variables Y1, . . . , Yn from
the auxiliary Gamma([α], [α]/α) distribution. Notice that m is a random variable,
which is smaller than n due to rejections. Perform the simulations for α = 4.85.

(c) Implement the independent Metropolis–Hastings algorithm using as proposal q the
PDF of the Gamma([α], [α]/α) distribution.

(d) Use the same sample Y1, . . . , Yn used within the Accept–Reject method, now in the
corresponding Metropolis–Hastings algorithm to generate n = 5000 realizations of
the target distribution Gamma(α, 1) with α = 4.85.

(e) Compare both methods with respect to:
i. their acceptance rates,
ii. their estimates for the mean of the Gamma(4.85, 1) distribution, which is 4.85,
iii. the correctness of the target distribution,
Discuss your results.

1Hint: Recall that
∑K

k=1 ξk ∼ Gamma(K,β) for K ∈ N, if ξk
i.i.d.∼ Gamma(1, β) ≡ Exp(β).

7

Solution

1. Let C > 0 such that f(x) ≤ Cq(x) for any x ∈ supp(f). Suppose that the chain is
stationary. Then the expected acceptance probability is

E

(
min

{
f(Yn+1)q(Xn)

f(Xn)q(Yn+1)
, 1

})
=

∫
I{ f(y)q(x)

q(y)f(x)
≥1

}f(x)q(y) dx dy

+

∫
f(y)q(x)

q(y)f(x)
I{ f(y)q(x)

q(y)f(x)
<1

}f(x)q(y) dx dy

= 2

∫
I{ f(y)q(x)

q(y)f(x)
≥1

}f(x)q(y) dx dy

≥ 2

∫
I{ f(y)

q(y)
≥ f(x)

q(x)

}f(x)f(y)
C

dx dy

=
2

C
P

(
f(X1)

q(X1)
≥ f(X2)

q(X2)

)
=

1

C
,

where the last equality follows form the fact that X1 and X2 are independent and
both distributed according to f by assumption. In contrast, the average acceptance
probability for an Accept–Reject method is always equal to 1/C.

2. Proving that b = [α]/α is the optimal choice for b follows from straightforward calcula-
tions. In fact, the ratio f(x;α, 1)/f(x; a, b) is

f(x;α, 1)

f(x; a, b)
= b−axα−ae−(1−b)x Γ(a)

Γ(α)
,

for any x ≥ 0, which yields the bound C = b−a
(

α−a
(1−b)e

)α−a for b < 1. The optimal choice
for b then follows by optimization. A possible Python implementation for this exercise
is shown at the end of this Section. The code produced, for example the following
output regarding the acceptance rate:

AR acceptance rate 0.9044862518089725
MH acceptance rate 0.9352

AR mean 4.814883929306847
MH mean 4.830617617460223

confirming the theoretical result proved above. Furthermore, the code also produced
the plots shown in Figures 3 and 4.
These plots show that both methods produce accurate approximations to the mean
and the PDF. Moreover, we would expect to see that the sample generated by the MH
algorithm contains more correlations, this is because the the AR method should, in
fact, produce independent samples, while the MH is a Markov chain. This, however, is
difficult to appreciate in the autocorrelation plots, as the samples obtained using MH
de-correlate quite rapidly.

8

Figure 3: (Left) Kernel density estimate (KDE) Metropolis Hastings. (Middle) KDE accept-
reject method. Both shown on top of true density. (Right) Ergodic estimator of the mean for
both methods.

Figure 4: Autocorrelation plot of AR (left) and MH (right). The blue band represents a 95%
confidence interval.

9

Python code:

import numpy as np
import scipy.special as sps
import matplotlib.pyplot as plt
from pandas import Series
import statsmodels.graphics.tsaplots as sm
import seaborn as sns
sns.set(color_codes=True)# Defines the pdf
sns.set(font_scale=2) #fontsize in plots
sns.set_style("white")

def f(x,a,b):
return b**a*x**(a-1)*np.exp(-b*x)/sps.gamma(a)*1*(x>=0)

def Cfunc(alpha, a, b):
return ((alpha - a)/(1-b))**(alpha-a) * np.exp(a-alpha) * sps.gamma(a)/sps.gamma(alpha)/b**a

Some parameters
alpha=4.85
a = np.floor(alpha)
b = np.floor(alpha)/alpha
C = Cfunc(alpha,a,b)

Does the accept reject part
n = 5000
Aar = 0
Xar = np.zeros(n)
i = 0
p = 0
while i<n:

xi = np.random.gamma(shape = a, scale = 1/b, size=1)
ratio = f(xi,alpha,1)/(f(xi,a,b)*C)
p+=1
if np.random.random(1) < ratio:

Xar[i]=xi
i+=1

Aar=n/p # acceptance probability

Does the Metropolis Hastings part
Xmh = np.zeros(n)
Xmh[0] = 4
Amh=0
for i in range(n-1):

#samples proposal
y = np.random.gamma(shape = a, scale = 1/b, size=1)

10

#computes MH ratio
py=f(y,alpha,1)
px=f(Xmh[i],alpha,1)
qyx=f(Xmh[i],a,b)
qxy=f(y,a,b)

ratio=(py*qyx)/(px*qxy)
if np.random.random(1) < ratio:

Xmh[i+1]=y
Amh+=1

else:
Xmh[i+1]=Xmh[i]

Amh=Amh/n

print('---------------------------------------')
print('AR acceptance rate '+str(Aar))
print('MH acceptance rate '+str(Amh))
print('---------------------------------------')
print('AR mean '+str(np.mean(Xar)))
print('MH mean '+str(np.mean(Xmh)))
print('---------------------------------------')

xx=np.linspace(0,20,1000)
plt.plot(xx,C*f(xx,a,b))
plt.plot(xx,f(xx,alpha,1))
plt.legend(["Cg(x)","f(x)"])
plt.savefig("../figures/densities.png")
plt.show()

nn=np.arange(1,n+1)
plt.plot(nn,np.cumsum(Xar)/nn)
plt.plot(nn,np.cumsum(Xmh)/nn)
plt.hlines(alpha,0,n,color='black')
plt.legend(["AR","MH","True mean"])
plt.savefig("../figures/erg_mean.png")
plt.show()

sm.plot_acf(Xar,lags=20)
plt.gca().set_rasterized(True)
plt.legend(["AR"])
plt.savefig("../figures/acfar.png")
plt.show()

sm.plot_acf(Xmh,lags=20)
plt.gca().set_rasterized(True)
plt.legend(["MH"])

11

plt.savefig("../figures/acfMH.png")
plt.show()

sns.kdeplot(Xar, shade=True, color="r")
plt.gca().set_rasterized(True)
x = np.linspace(0,20,100)
plt.plot(x, f(x,alpha,1),color='black')
plt.title('KDE for AR')
plt.savefig('../figures/densAR.png')
plt.show()

sns.kdeplot(Xmh, shade=True, color="r")
plt.gca().set_rasterized(True)
plt.plot(x, f(x,alpha,1),color='black')
plt.title('KDE for MH')
plt.savefig('../figures/densMH.png')
plt.show()

Exercise 5 (Optional)
Consider a Markov chain {Xn} ∼ Markov(π, P) on a discrete state space X at equilibrium,
with P irreducible, and π the unique invariant probability measure of P . Let l2π be the Hilbert
space l2π = {f : X → R :

∑
i∈X f(i)2πi < ∞} with inner product (f, g)l2π =

∑
i∈X f(i)g(i)πi,

and l2π,0 = {f ∈ l2π : Eπ[f] = 0}.

1. Show that if (P, π) are in detailed balance, then (Pf, g)l2π = (f, Pg)l2π for any f, g ∈ l2π

2. Show that E[f(Xn)f(Xm)] = (Pm−nf, f)l2π for any f ∈ l2π and m > n.

3. Consider now the estimator

µ̂N =
1

N

N∑
n=1

f(Xn)

of µ = Eπ[f] under the assumption that f ∈ l2π. Show that Eπ[µ̂N] = µ, and

Var[µ̂N] =
1

N

N∑
l=0

cl(P
lf̃ , f̃)l2π ,

with f̃ = f − Eπ[f] ∈ l2π,0 and

cl,N =

{
1, l = 0

2(1− l
N), l > 0

(3)

4. Conclude that the asymptotic variance V(f, p) := limN→∞NVarπ(µ̂N) satisfies V(f, p) =
((2(I − P)−1 − I)f̃ , f̃)l2π if

sup
g∈l2π,0

(Pg, g)l2π
‖g‖l2π

= β < 1. (4)

12

5. Consider now the two irreducible transition matrices P1 and P2, both in detailed balance
with π and satisfying (4) for some β1, β2. Show that if (P1)ij ≥ (P2)ij∀i 6= j, then

V(f, P1) ≤ V(f, P2), (5)

for any f ∈ l2π.

Hint: Take P (λ) = (1− λ)P1 + λP2, λ ∈ [0, 1] and show that d
dλV(f, P (λ)) ≥ 0.

References
[1] A. Gelaman, W.R Gilks and G. Roberts, Weak convergence and optimal scaling of random
walk Metropolis algorithms, Ann. Appl. Probab. Volume 7, Number 1 (1997), 110-120.
[2] S. Brooks, A. Gelman. Handbook of Markov Chain Monte Carlo, 2011, CRC press.

13

