
Stochastic Simulation
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 10 – 21 November 2024

Markov Chains Monte Carlo

Exercise 0
Recall the Metropolis-Hastings algorithm 1.

Algorithm 1: Metropolis-Hastings Algorithm
Require: λ (initial distribution), Q (proposal distribution), π (target distribution)

1: Generate X0 ∼ λ
2: for n = 0, 1, . . . do
3: Generate candidate new state X̃n+1 ∼ Q(Xn, ·)
4: Generate U ∼ U([0, 1])
5: if U ≤ α(Xn, X̃n+1) then
6: Set Xn+1 = X̃n+1 {Candidate accepted with probability α}
7: else
8: Set Xn+1 = Xn {Candidate rejected with probability 1− α}
9: end if

10: end for

1. Compute the transition matrix of the Markov chain {Xn}n≥0 generated by Algorithm 1.

2. Show that the transition matrix is in detailed balance with π.

Solution

See section 8.1.1 of the lecture notes.

Exercise 1
Let us consider a 2D uniform square-lattice with atoms placed at each vertex, as is sketched
in Figure 1. The atoms can have an upward (red arrow) or a downward (blue arrow) pointing
magnetic moment (so-called spin). Specifically, let the lattice be made out of m×m atoms.
Therefore the system’s possible states are the 2m

2 possible spin choices for the m2 atoms.
That is, the spin of the atom at position (i, j) in the lattice is denoted with sij , 1 ≤ i, j ≤ m,
and can take a value in {−1,+1}. A specific system configuration is described by the matrix
S = (sij) ∈ {−1,+1}m×m, containing the spin of each of the m2 atoms.

1

Figure 1: Sketch of 2D square-lattice Ising model.

The energy of a given system state of this Ising model is given by

H(S) = −
m∑

i,j=1

(
1

2
Jsij(si−1,j + si+1,j + si,j−1 + si,j+1) +Bsij

)
, (1)

where J is a magnetic coupling constant and B is a constant describing the external magnetic
field. To account for boundary effects, we set s−1,j = sj,−1 = sm,j = sj,m = 0 in (1). The
probability of obtaining a specific system state is then given by the Boltzmann distribution
with Probability Mass Function (PMF)

f(S) ≡ fβ(S) =
1

Zβ
e−H(S)β , (2)

where β = 1/(kBT) denotes the so-called inverse-temperature (or thermodynamic beta) with
kB being the Boltzmann constant and T the absolute temperature. Here, Zβ denotes the
normalization constant that makes the target distribution fβ : {−1,+1}m×m → R+ a proper
PMF.

Let’s denote by M(S) =
∑m

i,j=1 sij/m
2 the system’s average magnetic moment corre-

sponding to the configuration S. Notice that the random realizations of the configuration
matrix S depend on the inverse temperature β. The expected value of the average magnetic
moment M(β) as a function of the inverse temperature β thus reads

M(β) =
∑
S∈K

M(S)fβ(S) =
1

Zβ

∑
S∈K

M(S)e−H(S)β , (3)

where K = {−1, 1}m×m is the set of all possible system configurations. Since the explicit
computation of the normalization constant Zβ is computationally expensive (Explain why!),
we rely on the Metropolis–Hastings algorithm here. That is, at each step a candidate config-
uration is proposed by randomly choosing an atom, with uniform probability, and “flipping”
its spin.

1. Write a Python function that implements the Metropolis–Hastings algorithm for the
Ising model. The input parameters for your function are: the number of steps n of the
chain that should be simulated, the number of atoms m2, the inverse temperature β,
the constants J and B, and the initial state of the system. The function should return
a list of energies and mean magnetic moments computed for each step of the chain, as
well as the final configuration of the system.

2

2. Use your Python function with β = 1/3 and for n, such that both the energy and the
average magnetic moment appear to have reached stationarity. Plot also the final system
configuration. Furthermore, compute the mean magnetic moment M(β) for different
values of β ∈ [13 , 1] and n = 5 · 106. Choose a lattice of 50× 50 atoms, J = 1, and B > 0
for all simulations.

Solution

Notice that the energy

H(S) = −
m∑

i,j=1

(
1

2
Jsij(si−1,j + si+1,j + si,j−1 + si,j+1) +Bsij

)
,

contains the products sijsi−1,j , . . . twice, so that we can rewrite the energy as

H(S) = −
m−1∑
i,j=1

Jsij(si+1,j + si,j+1)−
m∑

i,j=1

Bsij ,

which is more amenable for an implementation (and, in fact, used below). It is notewor-
thy however, that also the evaluation of the energy in this rewritten form requires O(m2)
operations. That is, if m is large, the evaluation is computationally expensive!

However, in the Metropolis-Hastings algorithm, we only need to evaluate the energy dif-
ference between two different states. In particular, let us denote by S the current system
configuration at step n of the algorithm and by Sc the proposed candidate configuration.
Due to the particular proposal structure, it follows that the only difference between S and
the candidate Sc is one spin. Suppose that this difference is at the atom in position (l, k), so
that

S = (sij) , S =
(
scij
)
, with scij =

{
sij , if i 6= l, j 6= k ,

−sij , if i = l, j = k .

Consequently, we can write the energy difference conveniently as

∆H(S,Sc) = H(Sc)−H(S) = −J (sclk − slk) (sl−1,k + sl+1,k + sl,k−1 + sl,k+1)−B (sclk − slk)

= 2Jslk(sl−1,k + sl+1,k + sl,k−1 + sl,k+1) + 2Bslk ,

which simplifies the implementation. Notice that the proposal transition matrix Q(S,S∗)
is symmetric. Indeed Q(S,S∗) = Q(S∗,S) = 1

m2 if S and S∗ differ by only one spin and
Q(S,S∗) = 0 if they differ by two or more spins. Hence the Metropolis-Hastings acceptance
rate becomes

α(S,Sc) = min

{
1,

f(Sc)Q(Sc,S)

f(S)Q(S,Sc)

}
= min

{
1,

f(Sc)

f(S)

}
= min {1, exp [−β∆H(S,Sc)]} . (4)

A possible Python code that uses these formulas is shown below. Figs. 2, 3, 4 and 5 show
the evolution of energy and magnetic moment as well as the state configuration for β = 1/3
and β = 1 respectively. For β = 1/3, the configuration plot shows the formation of spin-up
or spin-down clumps. The expected total magnetic moment is expected to be zero, and we
get an estimated value of 4.17. For β = 1, the configuration plot shows a phase transition,
namely that the spins all align eventually in the same direction. The absolute value of the

3

expected total magnetic moment of the invariant distribution is 2500 in theory, and we get
an estimated value of approximately 1968 since we have not excluded any burn-in time from
the calculation of the mean. We use the ergodic estimator

M(β) ≈ 1

n

n∑
k=0

M(Sk), (5)

where Sk denotes the state at the kth step of the MH algorithm.

Python code

import numpy as np

def ising(n, m, beta, J, B, S0):
Allocate vectors derived from a system's state
E = np.zeros(n+1)
M = np.zeros(n+1)

Initialize system
S = S0
Magnetic moment associated with the initial condition
M[0] = S.sum()
Energy associated with the initial condition
E[0] = - J * ((S[:,:m-1] * S[:,1:]).sum() + (S[:m-1,:]*S[1:,:]).sum()) - B * M[0]

for k in range(n):
PROPOSAL : generate candidate state
Sc = S.copy()
select randomly an atom on the lattice
i = int(np.floor(m * np.random.random()))
j = int(np.floor(m * np.random.random()))
Sc[i,j] = - S[i,j] # flip the spin

Change in magnetic moment due to this flip
dM = - 2 * S[i,j]

Change in the energy due to this flip
dE = 0
if i>0:

dE = dE + S[i-1,j]
if i < m-1:

dE = dE + S[i+1,j]
if j>0:

dE = dE + S[i,j-1]
if j<m-1:

dE = dE + S[i,j+1]

4

dE = 2*S[i,j]*(J*dE + B)

ACCEPT-REJECT STEP
alpha = np.min([np.exp(-dE*beta),1])
U = np.random.random()
if U < alpha:

S = Sc # Accept proposed candidate state
else:

dM = 0
dE = 0

Update energy and magnetic moment
E[k+1] = E[k] + dE
M[k+1] = M[k] + dM

return E, M, S

Figure 2: Evolution of energy and magnetic moment for β = 1/3.

Figure 3: Snapshots of the configuration for β = 1/3.

5

Figure 4: Evolution of energy and magnetic moment for β = 1.

Figure 5: Snapshots of the configuration for β = 1.

6

Figure 6: Mean magnetization versus β for B = 0.1

Exercise 2
Recall that the standard Metropolis-Hastings algorithm accepts a new candidate state j
drawn from the transition matrix Q, given the current state i, with probability α(i, j) =

min
(
πjQji

πiQij
, 1
)

, where π is the target probability measure. Consider now a Metropolis-
Hastings algorithm that uses the follwing alternative acceptance probabilities

α1(i, j) =
πjQji

πjQji + πiQij
,

and
α2(i, j) =

δij
πiQij

,

with δ such that δij ≤ πiQij∀i, j. Show that, in both cases, the produced Markov chain
satisfies the detailed balance condition.

Solution

Note that the detailed balance condition reads:

α(i, j)πiQij = α(j, i)πjQji.

Consider the first case α1(i, j) =
πjQji

πjQji+πiQij
. We then have that

α1(i, j)πiQij =
πjQjiπiQij

πjQji + πiQij
= α1(j, i)πjQji.

Consider now the second case α2(i, j) =
δij

πiQij
where δij = δji is chosen such that α2(i, j) ≤ 1,

∀i, j. Then

α2(i, j)πiQij = δij = δji =
δji

πjQji
πjQji = α2(j, i)πjQji

7

Exercise 3
Consider the following AR(k) model defined by

yn = Ayn−1 + ξn, ξn
iid∼ N (0,Γ), ξn ∈ Rk,

with A ∈ Rk×k, invertible and Γ ∈ Rk×k full rank.

(a) Show that the previous process is a Markov chain.

(b) Show that if y0 ∼ N (0,Γ0), then yn follows a multivariate Gaussian distribution for all
n.

(c) Find the invariant distribution of an AR(1) process (i.e, a special case of the previous
model).

(d) Simulate the AR(1) process and assess its convergence to the invariant distribution. In
addition, verify the ergodic theorem on the quantity

µ̂N =
1

N

N∑
n=1

yn.

(e) Establish theoretically the convergence of µ̂N by using the strong law of large numbers,
and a weighted version of the central limit theorem (e.g. Lindberg-Feller)

Solution

(a) Trivially, using the definition of the AR(k) model and denoting y[0,n] = (y0, y1, . . . , yn),
we have that

P(yn ≤ y|y[0,n−1]) = P(ξn ≤ y −Ayn−1|y[0,n−1]) = P(ξn ≤ y −Ayn−1|yn−1)

= P(yn ≤ y|yn−1),

since P(ξn ≤ y−Ayn−1|yn−1) is the Gaussian N (0,Γ) cummulative distribution function
evaluated at y −Ayn−1.

(b) We can show that the characteristic function for y1 is

E[eit
′y1] = E[eit

′Ay0]E[eit
′ξ1] = e−

1
2
t′AΓ0A′te−

1
2
t′Γt = e−

1
2
t′(AΓ0A′+Γ)t (6)

that is the c.f. function of a Gaussian with zero mean and covariance AΓ0A
′+Γ. Using

induction and repeating the same argument one can easily show that for arbitrary n
the covariance is of yn is AnΓ0 (A

n)′ +
∑n−1

i=0 AiΓ
(
Ai
)′.

(c) For k = 1 we have yn = ayn−1 + ξn, ξn ∼ N(0, γ). Assume that yn−1 ∼ N(0, σ2),
then yn ∼ N(0, a2σ2 + γ). Hence N(0, σ2) is invariant iff σ2 = a2σ2 + γ which implies
σ2 = γ

1−a2
and |a| < 1.

8

(d) The empirical invariant distribution of AR(1) follows after simulating a large number
of “paths” (here 104) and plotting the histogram and a large n = 104. Resulting
distribution is shown in Fig. 7 for a = 0.8, γ0 = 2, γ = 0.2. To verify the convergence,
we observe the distribution of m̂uN for different values of N in Fig. 8 and observe that
the CLT is verified.

Figure 7: Histogram of the invariant distribution for different iteration numbers.

Figure 8: µ̂N histograms superposed with normal distributions with variance scaling as 1/N .

9

(e) For the almost surely convergence we write

µ̂N =
1

N

N∑
n=1

yn =
1

N

N∑
n=1

(
any0 +

n∑
i=1

an−iξi

)
(7)

= y0
1

N

N∑
n=1

an +
1

N

N∑
n=1

n∑
i=1

an−iξi (8)

= y0
1

N

N∑
n=1

an +
1

N

N∑
i=1

N∑
n=i

an−iξi (9)

= y0
1

N

N∑
n=1

an +
1

N

N∑
i=1

1− aN−i

1− a
ξi (10)

= y0
1

N

N∑
n=1

an +
1

1− a

1

N

N∑
n=1

ξi −
a

(1− a)N

N∑
i=1

aN−iξi, (11)

where by the SLLN, the first term on the right hand side AN := y0
1
N

∑N
n=1 a

n →
0 a.s., the second term BN := 1

1−a
1
N

∑N
i=1 ξi → 0 a.s.. For the third term CN :=

a
(1−a)N

∑N
i=1 a

N−iξi we have

V (CN) =
a2

(1− a)2N2

N−1∑
i=0

a2iΓ ≤ a2

(1− a)2(1− a2)

Γ

N2
(12)

and E[CN] = 0, hence

P (|CN | < ε) ≤ V(CN)

ε2
≤ k(ε)

N2
(13)

with k(ε) = a2Γ
ε2(1−a)2(1−a2)

and
∑∞

N=1 P (|CN | > ε) ≤
∑∞

N=1
k(ε)
N2 < +∞. So by the

Borel-Cantelli lemma CN → 0 a.s.
For the CLT, we can use the Lindeberg-Feller theorem for triangular arrays:
For each N let XN,m, 1 ≤ m ≤ N be independent random variables such that

• E[XN,m] = 0

•
∑N

m=1 E[X2
N,m] → σ2 < ∞

• For all ε > 0, limN→∞
∑N

m=1 E[|XN,m|2; |XN,m| > ε] = 0.

Then
∑N

m=1XN,m → N(0, σ2) in distribution. We apply the theorem with XN,m =
1√
N

1−aN−m+1

1−a ξm. Then
(i)
∑N

m=1 E[X2
N,m] =

∑N
m=1

1
N

1−aN−m+1

1−a γ → γ
1−a

(ii)
N∑

m=1

E
[
X2

N,m

∣∣|XN,m| > ε
]

=

N∑
m=1

E
[
(1− aN−m+1)

(1− a)2N
ε2m
∣∣|ξm| > ε

√
N(1− a)/(1− aN−m+1)

]

≤
N∑

m=1

1

(1− a)2N
E
[
ξ2m
∣∣|ξm| > ε

√
N(1− a)

]
=

1

(1− a)2
E
[
ξ21
∣∣|ξ1| > ε

√
N(1− a)

]
→ 0.

10

Hence
∑N

m=1XN,m =
√
N
(

1
N

∑N
i=1

1−aN−i+1

1−a ξi

)
→ N(0, γ

1−a) and
√
Nµ̂N → N(0, γ

1−a).
Notice that γ

1−a > V[y∞], i.e. the estimator µ̂N is less efficient (has a larger variance)
than a Monte Carlo estimator µ̃N = 1

N

∑N
n=1 yn where yn are iid N(0, γ

1−a2
).

Python code

import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt

a = 0.8
gamma0 = 2.0
gamma = 0.2

M = 10000 # Number of samples
y0 = st.norm.rvs(size = (M,)) * np.sqrt(gamma0)

plt.figure(2)
plt.hist(y0, bins = 100, density = True, label='n = 0',alpha=0.5)
N = 10000 # Number of steps
y = y0.copy()
mu = y0.copy()
Ntest = [10,100,1000,10000]
j = 0
colour = ['red', 'blue', 'green', 'orange']
Ntest2= [0,2,4,6,8,10]

x_axis = np.linspace(-1,1,1001)

mus = []
mu_vars = []
for i in range(N):

y_new = a * y + st.norm.rvs(size = (M,)) * np.sqrt(gamma)
y = y_new.copy()
mu = ((i+1.)/(i+2.)) * mu + y / (i+2.) # incremental mean computation
if (i+1) in Ntest:

mus.append(np.mean(np.abs(mu)))
mu_vars.append(np.var(mu))
plt.figure(1)
plt.hist(mu, bins=100,density=True,color=colour[j],alpha=0.5,label=r'N = '+str(i+1))
plt.plot(x_axis, st.norm.pdf(x_axis, loc=0, scale=np.sqrt(gamma/(1-a**2)*10/(i+1))),color=colour[j])
j = j + 1

if (i+1) in Ntest2:
plt.figure(2)
plt.hist(y, bins = 100, density = True, label='n = '+str(i+1),alpha=0.5)

11

plt.figure(1)
#plt.loglog(Ntest, np.sqrt(mu_vars),'-+',label=r'$Var[\hat{\mu}^N]$')
#plt.loglog(Ntest, [100/np.sqrt(N) for N in Ntest],'--',color='red',label=r'$1/\sqrt{N}$')
plt.xlim((-0.5,0.5))
plt.grid(which='both')
plt.ylabel(r'$p_{\hat{\mu}^N}(x)$')
plt.xlabel(r'x')
plt.legend()
plt.savefig('../figures/asymptotic.png')

plt.figure(2)
plt.legend()
plt.xlabel(r'x')
plt.ylabel(r'$p_{y_n}(x)$')
plt.savefig('../figures/hist_invariant.png')
plt.grid(which='both')
plt.show()

12

