
Stochastic Simulations
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 04 – 3 October 2024

Stochastic process generation

Exercise 1
Let X = [X1, X2, ..., Xn]

i.i.d∼ U([−1, 1]n) be a random vector uniformly distributed over the
n-dimensional square Γ = [−1, 1]n, and define the random variable Z = 1‖X‖l2<1. Observe
that

I = E[Z] =

∫
Γ
1‖x‖l2<1p(x)dx =

1

|Γ|
|B(0, 1)| ,

where p(x) is the PDF of U([−1, 1]n), and |B(0, 1)| is the volume of the n-dimensional sphere
with center 0 and radius 1.

1. Let n = 2. Use Monte Carlo to approximate the value of I:

IN :=
1

N

N∑
k=1

Zk,

For N = 10, 100, 1000, 10000, compute IN as well as an approximate confidence interval
and compare with the exact value I. In addition, plot the relative error |IN−I|

I versus
N in logarithmic scale and verify the convergence rate.

2. (On the choice of N). By a priori analysis (knowing that Z ∼ Bernoulli(p) with
p = π/4), determine three lower bounds for N(α, ε) with ε = 10−2 and α = 10−4 for
ensuring that

P
∣∣IN − π/4

∣∣ > ε < α

using Chebycheff’s inequality (rigorous), the Berry-Esseen Theorem (rigorous) and the
leap of faith

IN − π/4√
Var(Z)/N

∼ N(0, 1).

Discuss the advantages and disadvantages of using each bound.

3. An important property of the MC method is that, under very weak regularity assump-
tions, an O(N−1/2) convergence rate holds independently of the dimensionality of the
underlying problem. To illustrate this, consider approximating E[Z] as in the first point,
for n = 6.

1

Solution

1. A possible python implementation is attached. The results are summarized in Fig. 1

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
N = 10

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
N = 100

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
N = 1000

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
N = 10000

101 102 103 104
N

10−5

10−3

10−1

|I−
I N
|/I

Error
N−1/2

Figure 1: Top: Computing the area of a circle using Monte Carlo. Bottom: Monte Carlo
error as a function of N, for N ranging from 10 to 10000. As we can see, even though there
is some randomness associated to the rate (which is to be expected), on average, the rate
decreases as N−1/2

.

In addition, Fig. 2 shows the correct value of I compared with its 95% confidence interval
for different values of N .
Python code:

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st

Generate circle plots to illustrate Monte Carlo
Ns = [10,100,1000,10000]
markersizes=[2,1,0.5,0.25]
n = 2
I = np.pi/4 # Area of circle divided by area of square
fig, ax = plt.subplots(1,len(Ns))

for i in range(len(Ns)):

2

101 102 103 104
N

0.6

0.7

0.8

0.9

1.0

1.1

I

True Mean
Estimated Mean
Estimated 95% Confidence Interval

Figure 2: Estimated mean and confidence interval for different sample sizes

circle = plt.Circle((0,0),1,color='black',fill=False)
N = Ns[i]
ms = markersizes[i]
print('Running for N =',N)

Generate N samples of n-dimension vectors
X = st.uniform.rvs(loc=-1,scale=2,size=(N,n))

Compute Z, I_N and relative error
Z = [int(np.linalg.norm(x)<1) for x in X]
I_N = np.mean(Z)

Collect points that are inside and outside
Xin = [x for (x,z) in zip(X,Z) if z==1]
Xout = [x for (x,z) in zip(X,Z) if z==0]

Plotting
ax[i].plot([x[0] for x in Xin], [x[1] for x in Xin],'+',markersize=ms)
ax[i].plot([x[0] for x in Xout], [x[1] for x in Xout],'+',markersize=ms)
ax[i].set_xlim((-1,1))
ax[i].set_ylim((-1,1))
titleString = 'N = %d' %N
ax[i].set_title(titleString,fontsize=8)
ax[i].set(aspect='equal')
ax[i].add_patch(circle)
ax[i].tick_params(axis='x',labelsize=5)
ax[i].tick_params(axis='y',labelsize=5)

plt.tight_layout()
plt.savefig('../figures/EX_1_1_MC.eps',bbox_inches='tight')

Generate additional data for the convergence graph

3

Ns_all = list(range(10,10001))
Xs_all = st.uniform.rvs(loc=-1,scale=2,size=(Ns_all[-1],n))
Zs_all = [int(np.linalg.norm(x)<1) for x in Xs_all]
mean = np.mean(Zs_all[:9])
var = np.var(Zs_all[:9])
means = []
variances = []
true_errors = []

for N in Ns_all:
mean_new = N/(N+1)*mean + Zs_all[N-1]/(N+1)
var_new = (N-1)/N*var + (Zs_all[N-1]-mean)**2/(N+1)
means.append(mean_new)
variances.append(var_new)
true_errors.append(abs(mean_new-I)/I)

mean = mean_new
var = var_new

plt.figure()
plt.loglog(Ns_all, true_errors,color='black',label='Error')
plt.loglog(Ns_all, [N**-0.5 for N in Ns_all],'--',color='red',label=r'$N^{-1/2}$')
plt.xlabel(r'N')
plt.ylabel(r'$|I-I_N|/I$')
plt.legend()
plt.grid(which='both')
plt.gca().set_aspect(0.2)
plt.savefig('../figures/EX_1_1_CONV.eps',bbox_inches='tight')

Plot the confidence intervals
plt.figure()
plt.semilogx([Ns_all[0], Ns_all[-1]], [I,I], label=r'True Mean')
plt.semilogx(Ns_all, means, label=r'Estimated Mean')
upperlim = [(m + st.norm.ppf(0.975)*np.sqrt(v/N)) for m,v,N in zip(means, variances, Ns_all)]
lowerlim = [(m - st.norm.ppf(0.975)*np.sqrt(v/N)) for m,v,N in zip(means, variances, Ns_all)]
plt.semilogx(Ns_all, upperlim,'--',color='red',label=r'Estimated 95% Confidence Interval')
plt.semilogx(Ns_all, lowerlim,'--',color='red')
plt.xlabel(r'N')
plt.ylabel(r'I')
plt.legend()
plt.grid(which='both')
plt.gca().set_aspect(3.0)
plt.savefig('../figures/EX_1_1_CONF.eps',bbox_inches='tight')
plt.show()

2. For determining the respective lower bounds for N(α, ε), note first that since Z ∼
Bernoulli(p = π/4), we have

Var(Z) = σ2 = E(Z − p)2 = p(1− p),

and
E|Z − p|3 = γ3 = (1− p)3p+ p3(1− p) = p(1− p)

[
(1− p)2 + p2

]
.

When using the central limit theorem relation (called “leap of faith” as we are in the

4

non-asymptotic setting), we may bound the probability of failure by

P
∣∣IN − I

∣∣ ≥ ε = P
√
N

∣∣IN − I
∣∣

σ
>

√
Nε

σ
= 2

(
1− Φ

(√
Nε

σ

))
.

To ensure that

2

(
1− Φ

(√
Nε

σ

))
< α,

one must use at least
NCLT (α, ε) =

⌈(σc1−α/2

ε

)2⌉
,

samples, where dxe := min{z ∈ Z | z ≥ x} and c1−α/2 is the 1 − α/2 quantile of the
standard normal distribution, i.e., Φ(c1−α/2) = 1− α/2.
When using the Chebycheff bound,

P
∣∣IN − I

∣∣ > ε ≤ E
|Z − π|2

Nε2
=

σ2

Nε2
.

To ensure that σ2/Nε2 < α, we have that

NCHEB(α, ε) =

⌈
σ2

αε2

⌉
,

ensures that the probability of failure is bounded by α.
When relying on the Berry–Essén theorem, the probability of failure is controlled by

P
∣∣IN − I

∣∣ > ε = P
√
N

∣∣IN − π
∣∣

σ
>

√
Nε

σ

≤ 2

(
1− Φ

(√
Nε

σ

))
+

2√
N

βK,

where K ≈ 0.4878 is the constant in the Berry-Essen inequality, and β = γ3/σ3.
The lower bound solution can then be viewed as the smallest integer which is larger or
equal to the zero of the equation

f(x) :=

(
1− Φ

(√
xε

α

))
+

βK√
x
− α

2
.

Since f ′ < 0 for all x > 0, the zero is unique. We determine the value of NBE in python
using the bisection method as follows:

import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
import scipy.optimize as so

p = np.pi/4

5

sigma = (p*(1-p))**(1/2)
gamma = p*(1-p)*((1-p)**2 + p**2)**(1/3)
K_BE = 0.4748

alpha = 1e-4
eps = 1e-2

Central Limit theorem bound
N_CLT = int(np.ceil((sigma*st.norm.ppf(1-alpha/2)/eps)**2))
print("N_CLT \t= ", N_CLT)

Berry Essen bound
Note - this interval needs to contain the root of f, otherwise the bisection method
iterations will fail as coded here.
Nmin = 100000
Nmax = 300000
maxIter = 1000
Ns = [Nmin, Nmax]
f = lambda N : 1-alpha/2-st.norm.cdf(np.sqrt(N)*eps/sigma) \

+ K_BE*gamma**3/sigma**3/np.sqrt(N)
i=1
while True and i < maxIter:

Nmid = int(np.ceil((Nmin+Nmax)/2))
if Nmid==Nmax-1 or Nmid==Nmin+1 or Nmid==Nmax or Nmid==Nmin:

break
if f(Nmin)*f(Nmid) < 0:

Nmax = Nmid-1
elif f(Nmax)*f(Nmid) < 0:

Nmin = Nmid+1

else:
import sys
sys.exit('Error during bisection method')

i = i+1

if f(Nmid)<0:
Nmid=Nmid+1

N_BE = Nmid
print("N_BE \t= ", N_BE)

Chebyshev bound
N_CHEB = int(np.ceil(sigma**2/(alpha*eps**2)))
print("N_CHEB \t= ", N_CHEB)

For the considered problem setting, we report the obtained numbers below and conclude

6

that
NCLT = 25513 ≤ NBE = 189737 � NCHEB = 16854789.

3. We rerun the Monte Carlo simulations for n = 6. The results are shown in Fig. 3 and
Fig. 4.

101 102 103 104
N

10−5

10−3

10−1

|I−
I N
|/I

Error
N−1/2

Figure 3: Numerical approximation of the 6-dimensional unit ball volume by respectively the
Monte Carlo method

101 102 103 104
N

0.6

0.8

1.0

I

True Mean
Estimated Mean
Estimated 95% Confidence Interval

Figure 4: Estimated mean and confidence interval for different sample sizes

We observe that the Monte Carlo method approximates the reference solution with a
rate 1/2 even for higher dimensions.

7

Exercise 2
Note: Refer to Section 4.4 of the lecture notes.
Consider the chemical reactions between three species S1, S2, S3, which are determined by
the following four reaction channels:

S1
c1→ ∅ ,

S1 + S1
c2→ S2 ,

S2
c3→ S1 + S1 ,

S2
c4→ S3 .

To simulate this system, consider the process Nt = (N1
t , N

2
t , N

3
t) ∈ N3

0, where N i
t denotes the

number of molecules of species Si at time t ≥ 0. In fact, this process is a time-continuous
Markov chain with transition probabilities given by

P
(
Nt+h = Nt,1 = (N1 − 1, N2, N3)

∣∣Nt = = (N1, N2, N3)
)
= a1(Nt)h+ o(h) ,

P
(
Nt+h = Nt,2 = (N1 − 2, N2 + 1, N3)

∣∣Nt = (N1, N2, N3)
)
= a2(Nt)h+ o(h) ,

P
(
Nt+h = Nt,3 = (N1 + 2, N2 − 1, N3)

∣∣Nt = (N1, N2, N3)
)
= a3(Nt)h+ o(h) ,

P
(
Nt+h = Nt,4 = (N1, N2 − 1, N3 + 1)

∣∣Nt = (N1, N2, N3)
)
= a4(Nt)h+ o(h) ,

P
(
Nt+h = Nt,5 = (N1, N2, N3)

∣∣Nt = (N1, N2, N3)
)
= 1− h

4∑
j=1

aj(Nt) + o(h) ,

for h sufficiently small, where Nt,k, k ∈ {1, ..., 5} indexes the possible transitions. Here, the
so-called propensity functions are

a1(N) = c1N
1 , a2(N) = c2

N1(N1 − 1)

2
, a3(N) = c3N

2 , a4(N) = c4N
2 ,

with N = (N1, N2, N3).

1. Try to construct the transition matrix corresponding to the above transition probabil-
ities and note the challenges. Is it possible to simulate the chemical reaction without
the explicit Q matrix? Hint: Think back to how you simulated the process in Exercise
2.1.

2. Utilise the following algorithm to simulate the chemical reaction system. Plot a time
series for each species’ number of molecules for t ∈ [0, T], T = 0.2, for the reaction rates

c1 = 1 , c2 = 5 , c3 = 15 , c4 =
3

4
,

using N0 = (400, 800, 0) as initial number of molecules. Repeat the simulation for the
same reaction rates c1, . . . , c4 also for T = 5.

Solution

Let
{
Nt ∈ N3

0 : t ∈ [0, T]
}

be the Markov jump process that describes the number of each
species present in the chemical reaction system. That is, unlike the processes covered during

8

Algorithm 1: Reaction simulation
1: Set N0 = (N1

0 , N
2
0 , N

3
0), J0 = 0

2: for n = 1, 2, ... do
3: Compute λ =

∑4
j=1 aj(NJn−1)

4: Generate Sn ∼ Exp (λ) and set Jn = Jn−1 + Sn

5: Generate I ∈ {1, 2, 3, 4} with probability mass function P(I = j) =
aj(NJn−1

)∑4
l=1 al(NJn−1

)
,

which is the probability that the jth reaction happens.
6: Set Nt = NJn−1∀t ∈ [Jn−1, Jn) and NJn = Nt,I

7: end for

the lecture, we have to deal with both a vector-valued process and the fact that the state
space may be unbounded. Regardless of these differences, the Q-matrix could be constructed
as usual, namely by Q =

(
q(n,m), n,m ∈ N3

0

)
, where

q(n,m) =

{
limh→0

P(Nt+h=n|Nt=m)
h , n 6= m ,

− limh→0
1−P(Nt+h=n|Nt=n)

h , n = m .

If one wanted to implement this matrix, then one would, of course, have to truncate the
state space appropriately. However, implementing this matrix explicitly is neither needed
nor advisable! In fact, the code below shows an exemplary implementation, which is used to
produce the times series shown in Figure 5. There first the jump times are generated, before
its is determined which reaction takes place.

Figure 5: Species’ concentration as a function of t ∈ [0, 5].

9

Python code
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
#defines constant and preallocates
c = np.array([1,5,15,3./4])

x, y, z = 400, 800, 0
xx = np.array([])
yy = np.array([])
zz = np.array([])
tt = np.array([])
t1 = 600000000
t = 0
i = 0
#simmulates dynamics
while t < t1:

v = np.array([x, x*(x - 1.)/2., y, y])
a = c * v
lam = np.sum(a)
#samples
p = a / np.sum(a)
rand = st.uniform.rvs()
r = np.where(np.cumsum(p) >= rand)[0].min()
t = t + st.expon.rvs(scale=lam)
print(t, lam)
#changes dynamics according to r
if r == 0:

x = x - 1
elif r == 1:

x, y = x - 2, y + 1
elif r == 2:

x, y = x + 2, y - 1
elif r == 3:

y, z = y - 1, z + 1

xx = np.append(xx,x)
yy = np.append(yy,y)
zz = np.append(zz,z)
tt = np.append(tt,t)
i = i + 1

#plots
plt.plot(tt, xx, linewidth = 1., label = r'N^1')
plt.plot(tt, yy, linewidth = 1., label = r'N^2')
plt.plot(tt, zz, linewidth = 1., label = r'N^3')
plt.legend()
plt.savefig('../py_figures/Ex2.png')
plt.show()

10

Exercise 3
Let {Nt ∈ N0 : t ≥ 0, N0 = 0} be a Poisson process with rate λ.

1. Show that, conditional on the event {NT = n}, the jump times J1, . . . , Jn have joint
density function

fJ1,...,Jn(j1, . . . , jn) = n!T−nI(0 ≤ j1 ≤ · · · ≤ jn ≤ T) .

In other words, show that conditional on {NT = n}, the jump times J1, . . . , Jn have
the same distribution as an ordered sample of size n from the uniform distribution on
[0, T].
Hints: Use the joint distribution of the holding times S1, . . . , Sn+1 to first derive the
joint distribution of the jump times, where Si+1 = Ji+1 − Ji. Then compute the
conditional distribution of the jump times given that NT = n, using the fact that
{NT = n} = {Jn ≤ T < Jn+1} a.s.

2. Use the property above to propose an algorithm to generate the process Nt, t ∈ (t1, t2),
conditional upon Nt1 = n1 and Nt2 = n2 > n1. Such a process is called Poisson bridge.

Solution

1. Since the Poisson process {Nt ∈ N0 : t ≥ 0, N0 = 0} is non-decreasing, the condition
NT = n implies that n jumps need to take place. Let’s denote these jump times by
J1, . . . , Jn. As a matter of fact, the jump times are related to the (n+1) holding times
S1, . . . , Sn+1 by Si+1 = Ji+1 − Ji for i = 0, . . . , n, with the convention that J0 = 0. We
know that the holding times are i.i.d. Exp(λ) for some λ > 0. Consequently, their joint
PDF reads

fS1,...,Sn+1(s1, . . . , sn+1) = λn+1 exp

(
−λ

n+1∑
i=1

si

)
I(s1, . . . sn+1 ≥ 0) .

As
∑n+1

i=1 Si =
∑n+1

i=1 (Ji−Ji−1) = Jn+1, the joint PDF of the jumping times J1, . . . , Jn+1

is given by

fJ1,...,Jn+1(t1, . . . , tn+1) = λn+1e(−λtn+1)I(0 ≤ t1 ≤ · · · ≤ tn+1) .

For any (Borel set) A ⊆ Rn we thus find

P
(
(J1, . . . , Jn) ∈ A|NT = n) =

P
(
(J1, . . . , Jn) ∈ A , NT = n)

P(NT = n)

= P((J1, ..., Jn) ∈ A, Jn ≤ T < Jn+1)

=
n!T−n

λne−λT

∫ ∞

T

(∫
A
λn+1e−λtn+1I(0 ≤ t1 ≤ ... ≤ tn ≤ T)dt1dt2...dtn

)
dtn+1

=
λn!T−n

e−λT

∫ ∞

T
e−λtn+1dtn+1

∫
A
I(0 ≤ t1 ≤ ... ≤ tn ≤ T)dt1dt2...dtn

= n!T−n

∫
A
I(0 ≤ t1 ≤ · · · ≤ tn ≤ T) dt1 . . . dtn ,

as claimed.

11

2. A possible Python code is shown below.

Figure 6: Simulation of the Poisson jump process.

Python code
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt

#defines some parameters
t1 = 1.
t2 = 10.
dt = t2 - t1
n1 = 2
n2 = 10
#starts the simulation
n = n2 - n1
J = np.sort(dt * st.uniform.rvs(size = (n,)))
t = t1 + np.hstack([0., J])
t = np.hstack([t, t2])
N = n1 + np.array(range(n+1))
N = np.hstack([N,n2])
Plots
plt.step(t, N)
plt.xlabel('t')
plt.ylabel(r'N_t')
plt.savefig('../py_figures/Ex3.png')

plt.show()

12

Exercise 4
Let {Nt, t ≥ 0, N0 = 0} be a non-homogeneous Poisson process with rate λ : [0,∞) 7→ R+.
In addition, define Λ(t) =

∫ t
0 λ(s)ds, and let {Ñt, t ≥ 0, Ñ0 = 0} be a homogeneous Poisson

process with rate one.

1. Show that the non-homogeneous Poisson process can be obtained as Nt = Ñt ◦ Λ(t),
i.e., Nt = ÑΛ(t).

2. Simulate a non-homogeneous Poisson process with rate function λ(t) = sin2(t) on the
interval [0, 50].

Exercise 5 (Optional)
1. Generate a random walk {Xn ∈ Z, n ∈ N0, X0 = 0} with transition probabilities

P(Xn+1 = j|Xn = j−1) = P(Xn+1 = j|Xn = j+1) = a , P(Xn+1 = j|Xn = j) = 1−2a ,

for some 0 < a ≤ 1/2.

2. Consider the rescaled process Yti :=
√

∆t/(2a)Xi for i = 0, . . . , n with ti = i∆t. Com-
pare this process with the process Wti , i = 0, . . . , n, where Wt denotes a Wiener process
with W0 = 0. That is, show that both processes “look similar” in the limit as ∆t → 0
by plotting multiple realizations of both processes for n = d1/∆te.

3. (Optional:) More theoretical analysis of the observed phenomenon:

(a) Consider the spatial mesh xm = m∆x = m
√

∆t/(2a) for m ∈ Z and the following
notation for the rescaled process’ probability mass function at time ti:

ū(ti, xm) := P(Yti = xm|Y0 = 0), m ∈ Z, i = 0, 1, . . .

Use the discrete Chapman–Kolmogorov formula

P(Yti+1 = xm|Y0 = 0) =
∑
k

P(Yti+1 = xm|Yti = xk)P(Yti = xk|Y0 = 0) (1)

to derive a difference equation for ū(ti+1, xm) in terms of ū(ti, ·).
(b) Show that the difference equation obtained in 3a corresponds to a finite difference

approximation of the one dimensional heat equation

ut(t, x) =
uxx(t, x)

2
, x ∈ R, t > 0,

on a uniform grid xi = i∆x and tj = j∆t with ∆t = 2ax2, using a second order
centered finite difference stencil in space and a first order forward Euler scheme in
time.

13

(c) For the standard Wiener process with P(W0 = 0) = 1, we denote the probability
density function at time t > 0 by

u(t, x) :=
e−x2/(2t)

√
2πt

, x ∈ R.

For all t > 0 and x ∈ R, show that the density satisfies the same heat equation
introduced in point 3b.

Solution

1.–2. A possible Pythonimplementation for both parts is shown at end of this section. Figure 7
illustrates typical realizations of both the Wiener process Wt and the rescaled random
walk Yt for two values of ∆t. We observe that, as ∆t → 0, both processes “look similar”
in the sense that one could not identify the rescaled random walk Yt, if it wasn’t for
the legend. Furthermore, similarly to the Wiener process, one can easily show that the
increments of the rescaled Random Walk are independent with variance equal to

√
∆t.

3. (a) We have that,

ū(ti+1, xm) = P(Yti+1 = xm|Y0 = 0)

=
∑
k∈Z

P(Yti+1 = xm|Yti = xk)P(Yti = xk|Y0 = 0)

=
∑
k∈Z

P(Yti+1 = xm|Yti = xk)ū(ti, xk)

= (1− 2a)ū(ti, xm) + aū(ti, xm−1) + aū(ti, xm+1) (2)

(b) Using the Taylor series for the solution of the heat equation, we have that

u(ti, xm−1) = u(ti, xm)−∆xux(ti, xm) +
∆x2

2
uxx(ti, xm) +O(∆x4),

u(ti, xm+1) = u(ti, xm) + ∆xux(ti, xm) +
∆x2

2
uxx(ti, xm) +O(∆x4),

u(ti+1, xm) = u(ti, xm) + ∆tut(ti, xm) +O(∆t2).

With the choice ∆x =
√
∆t/2a, this leads to

u(ti+1, xm) = u(ti, xm) +
∆t

2
uxx(ti, xm) +O(∆t2)

= u(ti, xm) +
∆t

2

u(ti, xm−1) + u(ti, xm+1)− 2u(ti, xm)

∆x2
+O(∆t2 +∆x4)

= (1− 2a)u(ti, xm) + au(ti, xm−1) + u(ti, xm+1) +O(∆t2),

which corresponds to Eq. (2), up to error terms that vanish as ∆t → 0.
(c) This can be seen by simply substituting the density into the standard heat equation.

14

Figure 7: Realizations of Yt and Wt for different dt.

Python code
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt

#defines the standard random walk
def RW(steps = 100, a = 1./2):

assert a <= 1./2, 'Parameter a should be at most 0.5.'
N = steps
X = np.zeros(N+1)
for i in range(1, N+1):

U = st.uniform.rvs()
X[i] = X[i-1] + (U <= a) - (a < U) * (U <= 2*a)

return X

#defines the rescaled random walk
def rescaledRW(T = 1., n = 100, a = 0.2):

X = RW(n, a)
dt = T / (n+1)
return np.sqrt(dt / (2*a)) * X

#defines the Wiener process
def Wiener(T = 1., n = 100):

W = np.zeros(n+1)
dt = T / (n+1)
for i in range(1,n+1):

W[i] = W[i-1] + np.sqrt(dt) * st.norm.rvs()
return W

#X = rescaledRW(n = 1000, a = 0.2)
#W = Wiener(n = 1000)
fig, axes = plt.subplots(nrows = 1, ncols = 3, figsize = (12,4))
i = 1
for ax in axes:

n = 100*(10**i)
print('running for n = ', n)

15

X = rescaledRW(n = n, a = 0.2)
W = Wiener(n = n)
t = np.linspace(0., 1, n+1)
ax.plot(t, X, linewidth = 1, label = 'Rescaled RW')
ax.plot(t, W, linewidth = 1, label = 'Wiener')
ax.set_title('time steps = '+str(n))
i = i + 1

plt.legend()
plt.savefig('../py_figures/Ex1.png')
plt.show()

16

