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Random Number Generation

Exercise 1
Consider Scipy ’s default uniform random number generator (RNG) uniform within the
Statistics module scipy.stats and use it to generate a sequence of numbers U1, U2, . . . , Un.
See this for the module documentation and see this for the full list of available continu-
ous distributions under scipy.stats . Consider different values of n, for example n =
25, 100, 103, 105, and address the following points:

1. Plot the cumulative distribution function (CDF) of the theorized U(0, 1) distribution
together with the empirical CDF of the data. Furthermore, produce a Q-Q plot of the
data. Use both plots to assess the quality of the sequence with respect to the theorized
U(0, 1) distribution. Describe your observations.

2. Implement the Kolmogorov–Smirnov test to ascertain whether the empirical CDF of
U1, U2, . . . , Un matches the theoretical CDF of the U(0, 1) distribution at level α = 0.1,
i.e., we reject the null hypothesis H0 at level α > 0 that the sample U1, . . . , Un

iid∼ U(0, 1)
if
√
nDn > Kα,n, where Dn = supx∈R|F̂ (x) − F (x)|, and Kα,n is such that P(

√
nDn >

Kα,n) < α.
It is known that the appropriately scaled test statistic Dn = supx∈R

∣∣F̂n(x) − F (x)
∣∣

converges in distribution to a Kolmogorov random variable K independently of F , where
P(K ≤ x) = 1 + 2

∑∞
j=1 (−1)je−2j2x2 , x > 0. This asymptotic result can then be used

to compute the required 1 − α quantiles, Kα,n ' Kα,∞. It is however also possible to
characterize the distribution of Dn directly, which is useful for small values of n. Table
1 presents some of these pre-asymptotic 1− α quantiles Kα,n.

3. Implement the χ2 goodness of fit test to ascertain whether the sequence U1, U2, . . . , Un is
equidistributed. A description of such method can be found on section 8.7.4 of Handbook
of Monte Carlo Methods (See also page 10 of the lecture notes).
Hint: you can use the ppf function of the scipy.stats.chi2 class to compute quantiles
of a χ2 distribution.

4. Repeat the tests in points 2. and 3. for different values of α. What do you observe?
Explain your findings.
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α

n 0.20 0.10 0.05 0.01

1 0.90 0.95 0.98 0.99
2 0.96 1.10 1.19 1.32
3 0.97 1.11 1.23 1.44
4 0.98 1.12 1.24 1.46
5 1.01 1.14 1.25 1.50
6 1.00 1.15 1.27 1.52
7 1.01 1.16 1.30 1.53
8 1.02 1.16 1.30 1.53
9 1.02 1.17 1.29 1.53
10 1.01 1.17 1.30 1.55
11 1.03 1.16 1.29 1.56
12 1.04 1.18 1.32 1.56
15 1.05 1.16 1.32 1.55
20 1.03 1.16 1.30 1.57
30 1.04 1.20 1.31 1.59
35 1.06 1.24 1.36 1.60
40 1.08 1.20 1.33 1.58
45 1.07 1.21 1.34 1.61

n > 45 1.07 1.22 1.36 1.63

Table 1: Critical values for the Kolmogorov–Smirnov test statistic Dn = supx∈R
∣∣F̂n(x)−F (x)

∣∣.
The tabulated values Kn,α are such that P(

√
nDn ≥ Kn,α) = α.

Solution

Implementation details concerning the tasks in this exercise are presented at the end of this
Section. There we mention solutions without using built-in functions as well as indicate
possible solutions based on built-in functions.

1.–3. Figure 1 illustrates the CDF comparisons and Q-Q plots for a rand sequence (seed is
fixed for reproducibility; c.f. code). We see that increasing n results in a better linear
behavior in the Q-Q plots as well as a better fit of the empirical CDF and the theorized
CDF.
Furthermore, the test outcomes (α = 0.1) for the same sequences are shown in Table
2, suggesting that scipy.stats ’s default RNG produces a sequence with the desired
uniform distribution indeed. Note that for some cases, the χ2-test can reject the null
hypothesis for 104. This is somehow an artifact of the selected seed.

4. The smaller the values of α, the higher the confidence with which we require the test
to hold. To account for an increased level of confidence, the value of a test statistic has
to be even bigger before a test rejects the null hypothesis. This can be observed using
the code in Section 1.
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(a) n = 25 (b) n = 100

(c) n = 103 (d) n = 104

Figure 1: CDF (right) and Q-Q (left) plots for various values of n, based on sequences
generated by uniform.rvs() (Exercise 1).

n

Test 25 100 1000 10000 100000

KS not rejected not rejected not rejected not rejected not rejected
χ2 not rejected not rejected not rejected rejected not rejected

Table 2: Test outcomes for uniform.rvs() at level α = 0.1.

Exercise 2
Implement the linear congruential generator (LCG)

Xk = (aXk−1 + b) mod m , Uk :=
Xk

m
,

with a = 3, b = 0, and m = 31.

1. Use your LCG procedure to generate a sequence U1, U2, . . . , Un and repeat Exercise 1.
Discuss your results.

2. Explain why one would expect that the Serial test (with d = 2, say) is an appropriate
test to scrutinize the LCG. Support your explanation by applying the Serial test at level
α = 0.1 to sequences (for various values of n) from both the LCG and from the default
scipy.stats RNG uniform.

3. Implement the Gap test. Apply the test to both a sequence obtained from the default
scipy.stats RNG uniform and to a sequence generated by the LCG. What do you
observe?
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Solution

1. Figure 2 illustrates the CDF comparisons and Q-Q plots for LCG sequences (seed X0 is
equal to 1). The test outcomes (α = 0.1) for the same sequences are shown in Table 3.
We see that the KS-test rejects the null hypothesis of a uniform distribution for large

(a) n = 25 (b) n = 100

(c) n = 103 (d) n = 104

Figure 2: CDF (right) and Q-Q plots for various values of n, based on sequences generated
by LCG (Exercise 2).

n

Test 25 100 1000 10000 100000

KS not rejected not rejected not rejected rejected rejected
χ2 not rejected not rejected not rejected not rejected not rejected

Table 3: Test outcomes for the LCG at level α = 0.1.

values of n. This is a consequence of the non-vanishing residual of |F̂ − F | due to the
periodicity of the LCG sequence (m = 31 is small). Notice that the χ2-test with number
of bins K = 10 does not reject the null hypothesis even for large values of n. This is
due to the fact that K is small compared to the length of the sequence n. Increasing
the value of K (e.g. K = 20) for large values of n changes this (see also the discussion
on the value of r below).

2. The reason why we expect the Serial test to perform very well in rejecting the LCG se-
quence is the LCG’s periodicity. Specifically, Figure 3 shows plots of the tuple (Ui, Ui+1)
for both a uniform.rvs sequence (left) and a LCG sequence, each of length n = 1000.
While we cannot recognize any systematic pattern in the plot for the scipy.stats
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Figure 3: Plots of the tuple (Ui, Ui+1) for both a uniform.rvs() sequence (left) and a LCG
sequence, each of length n = 1000.

generated numbers, the plot for the LCG shows a systematic pattern. As a consequence
the full state space is not explored by the sequence. The serial test is, however, exactly
designed for ascertain a uniform coverage of the state space, which suggests that the
test will reject the LCG sequences. The implementation of the Serial test is simple
extension of the χ2-test used in the previous Exercise.
Here the serial test is implemented with m = 10 subdivisions along each dimension.
The numerical tests confirm the motivation that this test is effective to identify the
LCG sequence as not coming from a uniform random variable. In fact, the test rejects
the null hypothesis at level α = 0.1 already for n ≥ 100; see Table 4. A rule-of-thumb

n

Test 26 100 1000 10000 100000

Serial not rejected rejected rejected rejected rejected

Table 4: Serial test outcomes for the LCG at level α = 0.1.

in practice is to use n and m such that n ≥ 5md. This is satisfied here for n ≥ 1000
(m = 10 and d = 2).

3. Here the Gap-test is implemented with r = 5 and the test outcomes are shown in Table 5.
We observe that the Gap-test rejects the null hypothesis at the level α = 0.1 for n ≥ 100
of the LCG sequence, while the null hypothesis for the uniform.rvs() sequence was
never rejected. Notice however that the smallest expected number per class is not bigger
than 5 (which is the recommended threshold in practice) for approximately n < 350, so
that the outcomes for smaller values of n may not be reliable.

n

RNG 25 100 1000 10000

rand not rejected not rejected not rejected not rejected
LCG not rejected rejected rejected rejected

Table 5: Gap-test for uniform.rvs() and LCG sequences of length n.
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1 Python code
The Python code below exemplifies the implementation of the exercises of this lab. There
the function getCriticalValueKS(n,alpha) computes (possibly via an interpolation step)
the critical values needed for the KS test, which are based on the Table given in the exercise
description.

1.1 getCriticalValuesKS.py script
import numpy as np
import math
from scipy import interpolate as intrp

def getCriticalValuesKS(n, alpha):
#GETCRITICALVALUEKS compute the critical value for the two-sided KS test
#statistic

# References:
# Massey, F.J., (1951) "The Kolmogorov-Smirnov Test for Goodness of Fit",
# Journal of the American Statistical Association, 46(253):68-78.
# Miller, L.H., (1956) "Table of Percentage Points of Kolmogorov Statistics",
# Journal of the American Statistical Association, 51(273):111-121.
# Marsaglia, G., W.W. Tsang, and J. Wang (2003), "Evaluating Kolmogorov`s
# Distribution", Journal of Statistical Software, vol. 8, issue 18.

# The critical value table used below is expressed in reference to a
# 1-sided significance level. Need to halve the significance level for
# a basic two-sided test.

alpha1 = alpha / 2.

if n <= 20: # Small sample exact values.
# Exact K-S test critical values are solutions of an nth order polynomial.
# Miller's approximation is excellent for sample sizes n > 20. For n <= 20,
# Miller tabularized the exact critical values by solving the nth order
# polynomial. These exact values for n <= 20 are hard-coded into the matrix
# 'exact' shown below. Rows 1:20 correspond to sample sizes n = 1:20.
a1 = np.array([0.00500, 0.01000, 0.02500, 0.05000, 0.10000]) # 1-sided significance level

exact = np.array([[0.99500, 0.99000, 0.97500, 0.95000, 0.90000],
[0.92929, 0.90000, 0.84189, 0.77639, 0.68377],
[0.82900, 0.78456, 0.70760, 0.63604, 0.56481],
[0.73424, 0.68887, 0.62394, 0.56522, 0.49265],
[0.66853, 0.62718, 0.56328, 0.50945, 0.44698],
[0.61661, 0.57741, 0.51926, 0.46799, 0.41037],
[0.57581, 0.53844, 0.48342, 0.43607, 0.38148],
[0.54179, 0.50654, 0.45427, 0.40962, 0.35831],
[0.51332, 0.47960, 0.43001, 0.38746, 0.33910],

[0.48893, 0.45662, 0.40925, 0.36866, 0.32260],
[0.46770, 0.43670, 0.39122, 0.35242, 0.30829],

[0.44905, 0.41918, 0.37543, 0.33815, 0.29577],
[0.43247, 0.40362, 0.36143, 0.32549, 0.28470],
[0.41762, 0.38970, 0.34890, 0.31417, 0.27481],
[0.40420, 0.37713, 0.33760, 0.30397, 0.26588],

[0.39201, 0.36571, 0.32733, 0.29472, 0.25778],
[0.38086, 0.35528, 0.31796, 0.28627, 0.25039],
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[0.37062, 0.34569, 0.30936, 0.27851, 0.24360],
[0.36117, 0.33685, 0.30143, 0.27136, 0.23735],
[0.35241, 0.32866, 0.29408, 0.26473, 0.23156]])

criticalValue = intrp.interp1d(a1 , exact[n-1,:], kind = 'cubic')(alpha1)
else: # Large sample approximate values.

# alpha is a 1-sided significance level
A = 0.09037 * (-math.log(alpha1, 10))**1.5 + 0.01515 * math.log(alpha1,10)**2 - 0.08467 * alpha1 - 0.11143
asymptoticStat = np.sqrt(-0.5*np.log(alpha1)/n)
criticalValue = asymptoticStat - 0.16693 / n - A / n**1.5

criticalValue = np.min([criticalValue, 1-alpha1])

return criticalValue

1.2 lab01.py script
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
from getCriticalValuesKS import *

#np.random.seed(12345) # Fix seed to allow rerpoducibility

def LCG(X0 = 1, n = 100, a = 3, b = 0, m = 31):
"""
Linear Congruential Generator
"""
X = np.zeros(n+1)
X[0] = X0
for i in range(1,n+1):

X[i] = (a * X[i-1] + b) % m

U = X / m
return U

def KSTest(X, alpha = 0.1):
"""
Kolmogorov Smirnov Test for data X and significance alpha
"""
xgrid = np.linspace(0, 1, 10001)
Fhat = [(X<=x0).sum()/float(n) for x0 in xgrid]
Dn = np.max(np.abs(Fhat - F(xgrid)))
#[Dn1, p] = st.kstest(X, F) # Comparison with the scipy.stats' builtin function
print('KS Test statistic: ' + str(Dn) )

val = getCriticalValuesKS(n, alpha)
true = int( (Dn > val) ) # Convert boolean to int
rej = ['cannot be', 'is']
stat = {'Statistic': Dn, 'Quantile': val, 'Significance': alpha}
message = 'KS test: the null hypothesis H0 ' + rej[true] + ' rejected at level alpha = ' + str(alpha)
return message, stat

def ChiSquareTest(X, K = 10, alpha = 0.1):
"""
Chi Squared Test for data X and significance alpha with K degrees of freedom
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"""
n = len(X)
p = np.ones(K) / K
N = np.array([np.sum((float(i)/K < X) & (X <= (i+1.)/K)) for i in range(K)])
QK = np.sum( (N-n*p)**2. / (n*p)) # test statistic
critval = st.chi2.ppf(1-alpha, K-1)
true_chi = 1 * (QK > critval)
rej = ['cannot be', 'is']
stat = {'Statistic': QK, 'Quantile': critval, 'Significance': alpha}
message = 'Chi2 test: the null hypothesis H0 ' + rej[true_chi] + ' rejected at level alpha = ' + str(alpha)
return message, stat

def SerialTest(X, d = 2, alpha = 0.1):
"""
Serial statistical test
"""
assert X.shape[0] % 2 == 0, 'Random sample length should be even.'
Y = X.reshape(2, int(X.shape[0]/2)).T
nY = Y.shape[0]
m = 10
K = m**d
Nm = np.zeros(K)
p = np.ones(K) / float(K) # True probabilities (uniform partition)
for k in range(K):

xl = (k % m) / float(m)
xu = xl + 1./m
yl = np.max([0., np.floor(k/float(m))]) / m
yu = yl + 1./m
Nm[k] = np.sum( ((xl< Y[:,0]) & (Y[:,0] <= xu)) * ( (yl<Y[:,1]) & (Y[:,1]<= yu)))

rej = ['cannot be', 'is']
Qm = np.sum( (Nm - nY*p)**2 / (nY*p))
serval = st.chi2.ppf(1-alpha, K-1)
true_ser = 1 * (Qm > serval)
stat = {'Statistic' : Qm, 'Quantile': serval, 'Significance': alpha}
message = 'Serial test: the null hypothesis H0 ' + rej[true_ser] + ' rejected at level alpha = ' + str(alpha)
return message, stat

def GapTest(X, alpha = 0.1, aa=0., bb=0.5, r=5):
"""
Gap test
"""
idx = list(set(np.where(X > aa)[0]) & set(np.where(X < bb)[0]))
idx = np.hstack([0, np.array(idx) + 1])
Z = idx[1:] - idx[:-1] - 1
prob = bb - aa
p = prob * (1 - prob) ** np.array([i for i in range(r)])
p = np.hstack([p, (1 - prob)**r])

Nr = np.zeros(r+1)
for j in range(r):

Nr[j] = np.sum( Z == j)

nZ = len(Z)
Nr[-1] = nZ - np.sum(Nr)
Qr = np.sum( (Nr - p*nZ)**2. / (p*nZ))
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critval = st.chi2.ppf(1 - alpha, r)
rej = ['cannot be', 'is']
true = 1 * (Qr > critval)
stat = {'Statistic': Qr, 'Quantile': critval, 'Significance' : alpha}
message = 'Gap test: the null hypothesis H0 ' + rej[true] + ' rejected at level alpha = ' + str(alpha)
return message, stat

def cdf(X):
"""
Empirical CDF
"""
Xs = np.sort(X) # Sorted version of data
n = len(X)
x = np.array(range(1, n+1)) / (n+1.)
Nx = np.array([(x< x_i).sum() for x_i in x]) / float(n) # Computes empirical CDF
xx = np.hstack([Xs.reshape(n,1), Xs.reshape(n,1)]).flatten()
Nxx = np.hstack([ np.hstack([Nx.reshape(n,1), Nx.reshape(n,1)]).flatten()[1:2*n], 1])
return xx, Nxx

F = lambda u: u * (u>=0) * (u<=1) + (u>1) # CDF
Finv = lambda u: u * (u>=0) * (u<=1) + (u>1) # Inverse CDF

if __name__=='__main__':
# Generate Data
n = 10 # number of samples
Y = st.uniform.rvs(size = n) # Using Scipy's built-in function
X = LCG(n = n)[1:] # Using LCG function above

Xs = np.sort(X) # Sorted version of data

x = np.array(range(1, n+1)) / (n+1.)
[xx, Nxx] = cdf(X)

fig = plt.figure(figsize = (8,4))
ax_qq = fig.add_subplot(121)
ax_qq.plot(x, x, 'k--', linewidth = 1.)
ax_qq.plot(Finv(x), Xs, '-.', linewidth = 1.)
ax_qq.set_title('Q-Q')
ax_cdf = fig.add_subplot(122)
ax_cdf.plot(x, F(x), 'k--', linewidth = 1.)
ax_cdf.plot(xx, Nxx, '-', linewidth = 1.)
ax_cdf.set_title('CDF')

#plt.savefig('../figures/qq_cdf_LCG_n1000.png')
plt.show()

[message_KS, stat_KS] = KSTest(X, 0.01)
print(message_KS)

[message_chi2, stat_chi] = ChiSquareTest(X, alpha=0.01)
print(message_chi2)

[message_ser, stat] = SerialTest(X)
print(message_ser)

[message_gap, stat_gap] = GapTest(X)
print(message_gap)
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fig1 = plt.figure(figsize = (8, 4))
ax1 = fig1.add_subplot(121)
ax1.plot(Y[:-1], Y[1:], '-', linewidth = 1.)
ax2 = fig1.add_subplot(122)
ax2.plot(X[:-1], X[1:], '-')
#plt.savefig('../figures/pairs.png')
plt.show()

Comment on built-in functions

Many of the functions that need to be implemented in this Lab already exist as Python
built-in functions. For example, the empirical CDF can be conveniently plotted using the
ECDF function that is available in the statsmodels package. The Kolmogorov-Smirnov test
and χ2 test are also available. There is, of course, very little reason to reinvent the wheel
and we strongly encourage you to use these built-in functions in future Labs, if not stated
otherwise. However, before naively relying on built-in functions, it is important to understand
the underlying mathematical procedure.
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