Stochastic Simulations
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 09 — 14 November 2024

Markov Chains

We recall some concepts on the theory of Markov chains on a discrete state space X.

Irreducibility

Let P be be a transition matrix on X'. We say that a state x; € X communicates with a state
z; € X if P(X,, = zj, for some n | Xo = ;) > 0; equivalently, if In > 0 such that PZ(?) > 0.
A Markov chain is irreducible if every state x; communicates with every other state z;, i.e.,

¥i,j, 3n >0 such that P > 0.

Recurrence

A state x; € X is recurrent if P(X,, = z; infinitely often) = 1, that is, z; is visited infinitely-
often with probability 1. A Markov chain {X,,} is recurrent if everry state is recurrent. It
is known that every irreducible recurrent Markov chain {X,} on a discrete state space has a
(not necessarily finite) invariant distribution 7 that is unique up to a multiplicative constant.
However, if the state space is finite, every irreducible Markov chain {X,} is recurrent and
has a unique invariant probability distribution.

Aperiodicity

The period of a state x; is the largest integer d satisfying the following property: Pl-(?) =0,
whenever n is not divisible by d. The period of z; is given by d(i). We say that if d(i) > 1,
then the state x; is periodic. We say that the state x; is aperiodic otherwise. If a Markov chain
{X,} is irreducible and has an aperiodic state, then all states are aperiodic, in which case we
say that {X,} is aperiodic. In particular, an irreducible Markov chain {X,} is aperiodic if
there exists a state x; € X such that P;; > 0. It is known that an irreducible Markov chain
{X,} on a finite state space X’ converges to 7, i.e., mj; = lim, o P(X,, = z;), z; € X, if and
only if {X,,} is aperiodic.

Exercise 1

Consider the random walk {X,, € Z,n € No} with Xo ~ X on the lattice X := {i: i € Z,i| <
2N 2}, whose transition probabilities are given by

b
2N?2
P(Xpp1 =i|X, =1i) =12«

P(Xn+1:ii1\xn:i):a<1¢ > li| <2N?,

for some a €]0, 3] and N € N.

1. Implement an algorithm that simulates the Markov Chain {X,, € Z,n € Ny}. Use your
implementation to address the following points for different values of N > 1:

(a)

Assess numerically that the Markov chain converges to an invariant distribution
by simulating multiple (independent) chains, each starting in 0 (i.e. A = dp). That
is, monitor the following quantities (rather, suitable Monte Carlo approximations)
as functions of the Markov chain length n.

i. By (X,2)" for p e {1,2,4},
ii. M, (t) :=Ex(e'*n) for t € [-1,1].
Speculate on the invariant distribution.
For N = 10, compute the eigenvalues and eigenvectors of the transition matrix

P. Use the obtained results to deduce the invariant distribution 7. Hint: Use
np.linalg.eig(P).

Assess the validity of the ergodic theorem. That is, verify that

n

o1
nh_{go ﬁ ZO f(Xn) - Eﬂ'(f) ’]P))\ia's'a
1=
for any f: X — R, with) [f(X,,)|m, < co. Specifically, investigate this identity
for the moments used in Point and monitor the rate of convergence as a

function of n.

2. Consider the rescaled Markov chain Y,, := %Xn with state space) := {:UZ = ﬁ s

Z, il

vV =

< 2N 2}. Show by means of numerical simulations that the invariant distribution
vy of {Y, € Z,n € Ny} is an accurate approximation to the standard normal

measure. Moreover, illustrate that the approximation quality improves as IV increases.

Solution

1. A possible implementation is shown below:

def latticeRW(n=100,X0=0,N=2,aa=0.5):
X=np.zeros(nt+1)
X[0]=Xx0
t=np.arange(0,n+1)
for i in range(n):
xcurr=X[i]

—— emp. MGF
\ MGF of Normal distr.
5 10°
44
107 4
3 — M
ma
e
5
101 4
1]
0 100
T T T T T T —1?00 —0j75 —OI‘SO —0j25 0.&)0 0.‘25 0.‘50 0.‘75 l.IOO
0 100 200 300 400 500 t
(a) Moments m, = mp(n) = {/E(X,F) as a (b) Empirical moment generating function com-
function of n. pared to the one of a Normal distribution.

Figure 1: Convergence plots

pup=(1-xcurr/2/N*x2)*aa* (np.abs (xcurr) <=2 N**2)

plow=(1l+xcurr/2/N**2) *aa* (np.abs (xcurr) <=2xN**2)

r=np.random.random(1)

if (r<=plow): #decreses state
X[i+1]1=X[i]-1

elif ((plow<r)*(r<=plow+pup)): # increses state
X[i+1]=X[i]+1

else:
X[i+1]=X[i]

return X,t

(a) The numerical results shown here are obtained for « = 1/4, N = 4, and the
expectations are approximated by Monte Carlo generating R = 103 independent
chains. When inspecting the evolution of the resulting moment approximations
as a function of n, Fig. we notice an exponential convergence to a stationary
state. Moreover, the transition probabilities of the chain leads us to suspect that
the invariant distribution could be close to a Gaussian. This suspicion is further
strengthened when comparing the approximated moment generating function at
n = 500 with the moment generating function of a normal distribution, as is shown
in Figure [T

(b) If the Markov chain converges, then we expect exponential convergence e(n) =
[A2|", where Ao is the eigenvalue with largest absolute value smaller than one.

This is also visible in the numerical results of the previous point. Estimates of this
value for a = 1/4 are shown below:

N = 1: expected rate of convergence (in TV norm): C*|lambda_2|"n = Cx0.757n

N = 2: expected rate of convergence (in TV norm): C*|lambda_2|"n = C*0.93757n

N = 4: expected rate of convergence (in TV norm): C*|lambda_2|"n = C*0.9843757n
N = 8: expected rate of convergence (in TV norm): C*|lambda_2|"n = Cx0.996094"n
N = 10: expected rate of convergence (in TV norm): C*|lambda_2|"n = C*0.99757n
N = 20: expected rate of convergence (in TV norm): C*|lambda_2|"n = C*0.999375"

(¢) As a consequence of the CLT for Markov chains, we observe the canonical 1//n
convergence rate. We observe the trend in Fig. [2]

104 4

102

10-2 4

‘m.l' — T, .refl

1074 4

1076

. T T T T T
10° 101 102 103 104 105 106
Chain length n

Figure 2: Convergence of ergodic estimator to reference value

Python code for lattice simulation:

#!/usr/bin/env python3
—*x— coding: utf-8 —*-
Notice that this takes quite a bit of time to run.
import numpy as np
import matplotlib.pyplot as plt
def latticeRW(n=100,X0=0,N=4,aa=0.25):
X=np.zeros (n+1)
X[0]=X0
t=np.arange(0,n+1)
for i in range(n):
xcurr=X[i]
pup=(1-xcurr/2/N**2)*aa* (np.abs (xcurr) <=2*N**2)
plow=(l+xcurr/2/N**2)*aa*(np.abs (xcurr) <=2*N**2)
r=np.random.random(1)
if (r<=plow): #decreses state
X[i+1]=X[i]-1
elif ((plow<r)*(r<=plow+pup)): # increses state
X[i+1]=X[i]+1
else:
X[i+1]=X[i]
return X,t

#

Defines some parameters
#

N=4

x0=0

aa=1/4

N_runs=int (1E3) #this might be quite a large number
n=500

x1=np.zeros ((N_runs,n+1))
x2=np.zeros ((N_runs,n+1))
x4=np.zeros((N_runs,n+1))
M=np.zeros((n+1,n+1))
tau=np.linspace(-1,1,n+1)

runs the chain many times and obtains the quantities needed
for i in range(N_runs):

x1[i,:]=latticeRW(n,x0,N,aa) [0]

x2[1,:1=x1[i,:1*%2.0

x4[i,:1=x1[i,:1*%4.0

#computes moments
el=np.mean(x1,0)
e2=np.mean(x2,0)**0.5
e4=np.mean(x4,0)**0.25
Mx=np.mean(M,0)

plt.plot(el);

plt.plot(e2);

plt.plot(ed);

plt.grid(True,which="'both')

plt.legend([r'm_1',r'$m_2%',r'$m_4$'1)
plt.savefig('../figures/figl_a.png',format='png',bbox_inches='tight')
plt.show()

computes the MGF
tauvec=np.linspace(-1,1,n+1)
ntau=n+1
MGF=np.zeros((n+1,ntau))
for r in range(N_runs):

for i in range(ntau):

MGF[:,i]=MGF[:,i]l+np.exp(tauvec[i]*x1[r,:])

MGF=MGF/N_runs
mu=el[-1]
si2=e2[-1]**2.0-mu**2
plt.semilogy(tauvec,MGF[-1,:])

plt.semilogy(tauvec,np.exp(tauvec*mu+si2/2xtauvec**2.));
plt.legend(['emp. MGF','MGF of Normal distr.']l);
plt.xlabel(r't');

plt.savefig('../figures/figl_b.png',format='png',bbox_inches='tight')
plt.grid(True,which='both')

plt.show()
Python code for matrix construction:

#!/usr/bin/env python3
—*- coding: utf-8 —*-

#Constructs matriz and outputs 2nd largest eig

import numpy as np
import matplotlib.pyplot as plt

def build_matrix(a,N):
Nt=4*N**x2+1
P=np.zeros ((Nt,Nt))

for i in range(Nt):
xcurr=1i-2*N**2
P[i,il=1-2%*a
if (i<Nt-1):
P[i,i+1]=(1-xcurr/2/N**2)*a*(np.abs (xcurr) <=2xN**2)
if (i>0):
P[i,i-1]=(1l+xcurr/2/N**2)*a*(np.abs (xcurr) <=2xN**2)
obtains second largest eig
e,v=np.linalg.eig(P)
e.sort()
return P,e[-2]

a=1/4
N=[1,2,4,8,10,20]
for n in N:
_,e=build_matrix(a,n)
e=np.real(e) # to remove the 05 imaginary part
print('N = '+str(n) + ': expected rate of convergence (in TV norm): Cx|lambda_2|~

Exercise 2

A random walk on the integers I = {0,1,2...} can be constructed in the following way. For
0<p<1/2 let Yp,Y1,... beiid random variables with P(Y; = 1) = p and P(Y; = —1) =
1 — p. Define two random walks as (1) X,, = max{X,,_; +Y,,0} and (2) Z, = |Z,—1 + Y4 |.

1. Show that (X,,) and (Z,,) are Markov chains.

2. Show that an invariant probability measure of the chains (X,,) and (Z,,) is given by

k
o p p
= PR .. >
T [1’<1—p>’ ’<1—p> ,]ao, E>0

1 k—1
W:[l, P k,...]bo, k>,
I1—p (1-p) (1-p)

respectively. Find p, ag, by such that the expressions above are probability distributions.

3. Let p =1/8. Assess numerically the convergence of both Markov chains to their invari-
ant distribution by simulating multiple (independent) chains of length n = 100, each
staring in 0 (i.e. A = dp). That is, plot the empirical distribution of X,,, Z,, vs 7 and 7,
respectively. Repeat your experiments for m = n + 1. Explain your results.

4. Discuss the periodicity of both chains.
Solution
1. This follows from the definition of Markov chain, since X,,41 only depends on X,,. Thus,

]P)(XnJrl = :L‘n+1|X1 =T1y.-- ,Xn = l‘n) =]P)(Xn+1 = l’n+1’Xn = Jin)

2. Recall that 7 is an invariant distribution of a Markov chain with transition matrix P if
TP = .

Thus, we will verify this for our case. Consider the two Markov transition matrices P
and @ given by

1-p »p 0 0O 0 ... 0 1 0 0 0

1—-p O P o o . 1-p O P 0 O

p= 0o 1=p 0o p . | o=l 0 1-p 0o p -
0 0 1—p "= "o - 0 0 1-p °

where P corresponds to the transition matrix of the chain generated by X,11 =
max{0, X,, + Y} and @ corresponds to that of Z,+1 = |Z, + Y|. We will show that to
P and @ there correspond invariant distributions

k
N p p
=11 k>
™ [,<1_p>7 a<1_p> ’]aUa > 0,

- 1 P pk‘—l
™= |1, , e e Tae e
1—p (1-p) (1-p)
respectively. We begin with P. For simplicity, denote the i—th column of P by P;.

Notice that for P;, we have 7P, = [(1 —p) + (1 — p)p/(1 — p)]ap = ap = 71. Moreover,
for the k—th column we have

}bo, k> 1.

k-1 k+1
N N A p p
7TPk = Wk—lpk—l,k + 7Tk+1Pk+1,k =p <p> ap + (1 _p) <1 _ p> o

=|p+ s L k_la = Pyt P k_la = (-2 ka =7
1-p 1—p 0 1-p 1—p 0 1—p 0 k>

and as such, the chain with transition matrix P is invariant with respect to 7.

As for @), we have that for @1, 7Q1 = (1 — p)/(1 — p)by = by, for Q2, we have TQy =
bo + p/(1 — p)by = T2. Moreover, for Q, k > 2, we have

TQk = Tp—1P + Tp1(1 — p)
-2 k

o p _ D

B (e
k—1 k

_p p

S Ut gt

_ pkfl b o

T Q—pF T

which implies that 7 is an invariant distribution for the Markov chain with transition
matrix Q.

Notice that for both chains to be probability distributions, the sum of the components
of 7 and 7™ must add to 1. On the case of 7, ag and p must be chosen such that

[e’e] p k
ao) <1_p> =1
k=0

Notice that the previous sum is finite if p/(1 — p) < 1, which occurs for any p < 1/2. In
turn, it can be shown that (by computing the value of the previous geometric series) in
this case, the normalization constant is

_1-=2p

ag = 1—p.

A similar approach can be applied to) to obtain

1=2p
b0_2—2p' (3)

X” Z.lr

1.0+ 1.0 A
0.8+ 0.8 4
0.6+ 0.6 4
0.4+ 0.4 4
0.2+ K:” 0.2 4 Zu
.‘i”+] Zr.l+]
—_— —_
0.0+ 0.0 4
0 1 2 3 4 5 0 1 2 3 1 5

Figure 3: Empirical CDF of X,, (left) and Z,, (right) estimated from 10000 independent runs.
As we can see, the process X,, converges to the true distribution, whilst Z,, does not. this is
due to the periodicity of Z,.

3/4. Python code is attached. We repeat our experiments N = 10000 times starting at
Xo = Zy = 0. Figure [3|shows the empirical CDF of X,, (left) and Z, (right) for n = 100
and n = 101. As we can see, the chain with transition matrix P converges to its invariant
distribution, while the one with transition matrix QQ does not. This is due to the chain
with transition matrix Q not being aperiodic; notice that if the chain is at state 0, the
chain will move to state 1 with probability 1 and only returns to 0 after an even number
of steps.

Python code

import numpy as np
import matplotlib.pyplot as plt

from matplotlib import rc
rc('font',**{'family':'serif','serif':['Computer Modern Roman'],
'size' : '12'})

rc('text', usetex=True)

rc('lines', linewidth=2)

plt.rcParams['axes.facecolor']="'w'

import matplotlib

matplotlib.rcParams['text.latex.preamble'] = [
r'\usepackage{amsmath}',
r'\usepackage{amssymb}']

def chainl(n):
xn=np.zeros (n)
for i in range(n-1):
u=np.random.random (1)
if u <p:
a=1
else:
a=-1
xn[i+1]= np.max((xn[i] + a,0))
return xn

def chain2(n):
zn=np.zeros (n)
for i in range(n-1):
u=np.random.random(1)
if u <p:
a=1
else:
a=-1
zn[i+1]= np.abs(zn[i] + a)
return zn

#computes empirical cdf
def ecdf(data):
nnn Compute ECDF nimnn

x = np.sort(data)
n = x.size
y = np.arange(l, n+l) / n

return(x,y)

#computes pi hat

10

def true_cdf_1(K,p):
a0=(1-2%p)/(1-p) #this is the normalization constant
pi_hat=(p/(1-p))**np.arange (K)*a0
return pi_hat

#computes pi bar

def true_cdf_2(X,p):
r=p/(1-p)
b0=1/(1+(1/p)*(x/(1-r))) #this is the normalization constant
print (b0)
print (1/(1+1/(1-2%p)))
pi_hat=(1/p)*(p/(1-p))*+*np.arange(1,K) *b0
return np.concatenate([[b0O],pi_hat])

n=100
p=1/8

N=10000

ml=np.zeros(N)

m2=np.zeros (N)

m3=np. zeros (N)

m4=np.zeros (N)

for i in range(N):
ml[i]=chaini(n) [-1]
m2[i]=chainl(n+1) [-1]
m3[i]=chain2(n) [-1]
m4[i]=chain2(n+1) [-1]

computes empirical distribution
x1,el=ecdf (m1)
x2,e2=ecdf (m2)
x3,e3=ecdf (m3)
x4 ,ed=ecdf (m4)

computes the CDF for Xn

Kl=np.max(x1) #highest value obtained

pi_hat=true_cdf_1(K1,p) #obtaines wvalues of pi hat
cdf_pi_hat=np.cumsum(pi_hat) #computes cdf
cdf_pi_hat=np.concatenate([[0],cdf_pi_hat]l) # adds O for plotting

Computes the CDF for Zn

K2=np.max ([np.max(x3) ,np.max(x4)]) #highest wvalue obtained
pi_bar=true_cdf_2(K2,p) #obtaines values of pi bar
cdf_pi_bar=np.cumsum(pi_bar) #computes cdf
cdf_pi_bar=np.concatenate([[0],cdf_pi_bar]) # adds O for plotting

#fixzes parameter for plotting

11

fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (12,4))

plots cdf of Xn

axes[0] .plot(xl,el);

axes[0] .plot(x2,e2,'--");

axes[0] .step(np.arange(K1+1) ,cdf_pi_hat,'-*")

axes[0] .set_title(r'X_n"')

axes[0] .legend ([r'X_{n}',r'X_{n+1}"',r'$\hat{\pi}$']1)

plots cdf of Zn

axes[1] .plot(x3,e3);

axes[1] .plot(x4,ed,'--');

axes[1] .step(np.arange(K2+1),cdf_pi_bar,'-*"')

axes[1] .set_title(r'Z_n"')

axes[1] .legend([r'Z_{n}',r'Z_{n+1}',r'$\bar{\pi}$']1)

plt.savefig('../figures/convergence_distribution.png',bbox_inches='tight')

Exercise 3

Given the transition matrix

0.0 04 06 00 0.0
0.656 0.0 035 00 0.0
P=1032 068 00 00 00|, (4)
0.0 00 00 0.12 0.88
0.0 00 00 056 044

and examine whether the corresponding chain is irreducible and aperiodic.

Solution

Notice that from the block structure of the matrix P, the chain is not irreducible since states
4 and 5 do not communicate with states 1,2,3. Aperiodicity can be checked by definition.

12

