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Quasi Monte Carlo



Quasi Monte Carlo
Setting:
▶ Z = ψ(X) with X = (X1, . . . ,Xd) ∼ U([0, 1]2)
▶ Goal: compute E [Z ] =

∫
[0,1]d

ψ(x1, . . . , xd)dx1 · · · dxd

using a “Monte Carlo like” estimator µ̂QMC = 1
N

N∑
i=1

ψ(X (i))

Question: Can we improve the Monte Carlo convergence rate using a
“better” desing than a purely random one? ⇝ similar direction as
stratification
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(b) QMC Sampling
(Sobol sequence)



Discrepancy function
Notation
▶ P = {X (1), . . . ,X (N)}: point set (design) in [0, 1]d

▶ for y ∈ [0, 1]d , denote [0, y ] =
∏d

i=1[0, yi ] (hyper-rectangle of
vertices 0 and y)

▶ Vol([0, y ]) =
∏d

i=1 yi , volume of hyper-rectangle [0, y ]
▶ empirical volume based on point-set P

V̂olP([0, y ]) = 1
N

N∑
i=1

1[0,y ](X (i)) = #{X (i) ∈ [0, y ]}
N .

Discrepancy function: ∆P : [0, 1]d → [−1, 1]

∆P(y) = V̂olP([0, y ]) − Vol([0, y ])

= 1
N

N∑
i=1

1[0,y ](X (i)) −
d∏

j=1
yj .

y



Discrepancy function

Measures of discrepancy of a point set P:

Lq-discrepancy: DN,q(P) = ∥∆P∥Lq =
(∫

[0,1]d
|∆P(y)|q dy

)1/q

, 1 ≤ q < ∞

∗-discrepancy: D∗
N(P) = ∥∆P∥L∞ = sup

y∈[0,1]d
|∆P(y)|.



Zaremba’s identity (in 1D)
Lemma
▶ ψ : [0, 1] → R absolutely continuous with integrable derivatives
▶ P = {X (1), . . . ,X (N)} point set in [0, 1]∫ 1

0
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i)) =
∫ 1

0
ψ′(y)∆P(y) dy−∆P(1)ψ(1)

Proof. Using identity ψ(x) = ψ(1) −
∫ 1

x ψ
′(y) dy in left hand side∫ 1

0
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i))

= ψ(1) −
∫ 1

0

∫ 1

x
ψ′(y) dy dx︸ ︷︷ ︸

=
∫ 1

0

∫ y

0
ψ′(y) dx dy

− 1
N

N∑
i=1

ψ(1) + 1
N

N∑
i=1

∫ 1

X (i)
ψ′(y) dy︸ ︷︷ ︸

=
∫ 1

0
ψ′(y)1[0,y ](X (i))dy

=
∫ 1

0
ψ′(y)

[
1
N

N∑
i=1

1[0,y ](X (i)) − y

]
︸ ︷︷ ︸

∆P (y)

dy − ψ(1)

[
1
N

N∑
i=1

1[0,1](X (i)) − 1

]
︸ ︷︷ ︸

∆P (1)=0



Koksma-Hlawka inequality

∣∣∣∣∣
∫ 1

0
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i))

∣∣∣∣∣ ≤ ∥ψ′∥Lp ∥∆P∥Lq ,
1
p + 1

q = 1.

In particular, if ψ′ is integrable (or ψ has bounded total variation) then∣∣∣∣∣
∫ 1

0
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i))

∣∣∣∣∣ ≤ ∥ψ∥TVD∗
N(P).

The QMC quadrature error is proportional to the ∗-discrepancy of the
point set, provided that the function ψ has bounded total variation.



Generalization to higher dimension – Hlawka’s identity
Notation
▶ u = {u1, . . . , uk} ⊂ {1, . . . , d}: subset of dimensions (without

repetition)
▶ |u| = k: number of dimensions in u
▶ For x = (x1, . . . , xd) ∈ [0, 1]d , denote

▶ xu = (xu1 , . . . , xuk ) ∈ [0, 1]k
▶ z = (xu, 1): vector s.t. zj = xj if j ∈ u and zj = 1 if j /∈ u

Lemma (Hlawka’s identity)
Let ψ : [0, 1]d → R be an integrable function with integrable mixed first
order derivatives of any order, and let P = {X (1), . . . ,X (N)} be an
arbitrary point set in [0, 1]d . Then

1
N

N∑
i=1

ψ(X (i))−
∫

[0,1]d
ψ(x) dx =

∑
u⊂{1,...,d}

(−1)|u|
∫

[0,1]|u|

∂|u|ψ

∂xu
(xu, 1)∆P(xu, 1) dxu

where ∂|u|ψ
∂xu

= ∂kψ
∂xu1 ...∂xuk

is a mixed first order derivative.



Multidimensional Koksma-Hlawka’s inequality
Define the following norm

∥ψ∥p,p′ =

 ∑
u⊂{1,...,d}

(∫
[0,1]|u|

∣∣∣∣∂|u|

∂xu
ψ(yu, 1)

∣∣∣∣p dyu

)p′/p
1/p′

.

Multidimensional Koksma-Hlawka inequality, provided ∥ψ∥p,p′ < +∞∣∣∣∣∣
∫

[0,1]d
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i))

∣∣∣∣∣ ≤ ∥ψ∥p,p′∥∆P∥q,q′ ,
1
p + 1

q = 1
p′ + 1

q′ = 1

In particular, if ∥ψ∥1,1 < +∞, then∣∣∣∣∣
∫

[0,1]d
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i))

∣∣∣∣∣ ≤ ∥ψ∥1,1D∗
N(P).

Again, the QMC quadrature error is proportional to the ∗-discrepancy
D∗

N(P) provided ψ has integrable mixed first order derivatives.



Low discrepancy point sets and sequences
Definition.
▶ A family P = {PN}N∈N of non-nested point sets

PN = {X (1), . . . ,X (N)} ⊂ [0, 1]d is called a low discrepancy family
of point sets if

D∗
N(P) = O

(
(log N)d−1

N

)
▶ A point sequence S = {X (1),X (2), . . .} ⊂ [0, 1]d is called a low

discrepancy sequence if the corresponding family P = {PN}N∈N of
point sets given by PN = {X (1), . . . ,X (N)} (first N terms of the
sequence) satisties

D∗
N(S) = O

(
(log N)d

N

)

These bounds are believed to be the best possible for point sets and
sequences.
The term (log N)d growns exponentially with the dimension and the
bound becomes useless for d > log N. However, this degeneracy
with the dimension is not observed in most applications.



Example 1 – random points

Consider the sequence S = {X (1),X (2), . . . ,X (N), . . .} ⊂ [0, 1]d , with
X (i) iid∼ U([0, 1]d), i.e. a random design.
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How does D∗
N(S) behaves?



Example 2 – regular lattice
Consider the family P = {PN}N∈N of point sets given by regular lattices

PN =
{(

k1 + 1/2
m , . . . ,

kd + 1/2
m

)
, 0 ≤ kj ≤ m − 1, j = 1, . . . , d

}
, N = md

How does D∗
N(P) behaves?

Hint: observe that

D∗
N(P) = sup

y∈[0,1]d
|∆P(y)| ≥ sup

t∈[0,1]
|∆P(t, 1, . . . , 1)|



Van der Corput sequence

▶ Take b ∈ N, b ≥ 2.
▶ Any n ∈ N0 can be written as n = n0 + n1b + n2b2 + . . . (b-adic

expansion).

Definition. We define radical inverse of n, denoted ϕb(n) as

φb(n) = n0
b + n1

b2 + . . . .

Obviously φb : N0 → [0, 1).

b-adic Van der Corput sequence (in 1D)

S = {φb(0), φb(1), φb(2), . . .}

Example for b = 2: 0, 1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 , . . .

It is easy to check that D∗
N(S) = 1

b⌊logb N⌋ = O( 1
N )



Halton sequence; Hammersley point set

Halton sequence:

Let b1, . . . , bd ≥ 2 be integers pairwise relatively prime.

S = {X (n), n ∈ N0}, X (n) = (φb1(n), φb2(n), . . . , φbd (n))

▶ It achieves the optimal bound D∗
N(S) ≤ c(d) (log N)d

N

Hammersley point sets:

PN = {X (0), . . . ,X (N−1)}, with X (n) =
( n

N , φb1(n), . . . , φbd−1(n)
)

▶ The family P = {PN} is non-nested
▶ It achieves the better bound D∗

N(P) = c(d) (log N)d−1

N



Rank-1 lattice rules
▶ take N ∈ N (usually prime)
▶ g ∈ Nd , g = (g1, . . . , gd) such that gj has no factor in common with

N.
▶ Notation: for X ∈ [0, 1] denote {X} the fractional part of X

Rank-1 lattice rule with generating vector g :

PN =
{ng

N

}N−1

n=0

g

Good choices of g lead to low
discrepancy non-nested point sets.



(t − m − d) nets
Definition. Let 0 ≤ t ≤ m ∈ N and b ≥ 2. A (t-m-d)-net in base b is
a point set PN consisting of N = bm points such that each elementary
rectangle of volume bt−m,

Ra =
d∏

j=1

[
aj − 1

bpj
,

aj
bpj

)
, aj = 1, . . . , bpj

with p1 + p2 + . . .+ pd = m − t contains exactly bt points.

Example: (0-3-2)-net in base
b = 2:
▶ point set with

N = 23 = 9 points
▶ each elementary

rectangle with volume
2−(m−t) = 1/8 contains
exactly 2t = 1 point.



(t − m − d) nets and (t − d) sequences

Definition. A (t-d) sequence in base b is a sequence
S = {X (0),X (1), . . .} such that for any m > t, every block of bm points
{X (ℓbm), . . . ,X ((ℓ+1)bm−1)}, ℓ ∈ N is a (t-m-d)-net in base b.

▶ The star-discrepancy of a (t-m-d)-net satisfies

D∗
N(P) = O

(
bt (log N)d−1

N

)
▶ The star-discrepancy of a (t-d)-sequence satisfies

D∗
N(S) = O

(
bt (log N)d

N

)

Famous (t-d)-sequences are those of Sobol, Niederreiter and Faure.



Controlling the error in QMC

Let
▶ µ = E [ψ(X )] =

∫
[0,1]d ψ(x)dx

▶ µ̂QMC = 1
N
∑N

i=1 ψ(X (i)) for a given point set P = {X (1), . . . ,X (N)}

We have seen an “a-priori” error stimate for QMC:

|µ− µ̂QMC | =

∣∣∣∣∣
∫

[0,1]d
ψ(x) dx − 1

N

N∑
i=1

ψ(X (i))

∣∣∣∣∣ ≤ ∥ψ∥1,1D∗
N(P).

Not of practical use as ∥ψ∥1,1 and D∗
N(P) ar not known.

Question: how can we estimate the error in QMC?



Randomly shifted QMC

Let PN = {X (1), . . . ,X (N)} be a low discrepancy point set. Take
U ∼ U([0, 1]d)

The randomly shifted point set

PU
N = {{X (1) +U}, . . . , {X (N) +U}}

has the same discrepancy as PN

Idea: generate several randomly shifted point sets with independent shifts



Randomly shifted QMC
▶ Generate U(1), . . . ,U(k) iid∼ U([0, 1]d)
▶ For each shift U(j), construct the randomly shifted point set

P(j)
N = {{X (1) + U(j)}, . . . , {X (N) + U(j)}}

▶ compute QMC estimator µ̂(j)
QMC using the point set P(j)

N

µ̂
(j)
QMC = 1

N

N∑
i=1

ψ({X (i) + U(j)})

▶ Estimate µ by µ̂QMC = 1
k

k∑
j=1

µ̂
(j)
QMC

▶ Notice that {X (i) + U(j)} ∼ U([0, 1]d) for any i and j . Hence µ̂QMC

is unbiased and µ̂(i)
QMC are all independent

▶ Var [µ̂QMC] = σ2
QMC
k , σ2

QMC = E
[
(µ̂(j)

QMC − µ)2
]

= O
(

(log N)2(d−1)

N2

)
▶ Asymptotic 1 − α confidence interval for µ̂QMC

Iα =
[
µ̂QMC − c1−α/2

σ̂QMC√
k
, µ̂QMC + c1−α/2

σ̂QMC√
k

]



Randomly shifted QMC

Algorithm: Randomly shifted QMC.
1 Generate point set PN = (X (1), . . . ,X (N))
2 Generate U(1), . . . ,U(k) iid∼ U([0, 1]d);
3 For j = 1, . . . , k, compute µ̂(j)

QMC = 1
N
∑N

i=1 ψ({X (i) + U(j)});
4 Compute µ̂QMC = 1

k
∑k

j=1 µ̂
(j)
QMC as well as

σ̂2
QMC = 1

k−1
∑k

j=1(µ̂(j)
QMC − µ̂QMC )2;

5 Output µ̂QMC as well as a 1 − α confidence

Iα =
[
µ̂QMC − c1−α/2

σ̂QMC√
k
, µ̂QMC + c1−α/2

σ̂QMC√
k

]
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