MATH-414 — Stochastic simulation

Lecture 8: Quasi Monte Carlo

Prof. Fabio Nobile
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Quasi Monte Carlo
Setting:
> Z = (X) with X = (X1,
» Goal: compute E[Z] =
[0,1)

e Xg) ~U(0,1]?)
Q/J(Xl,..

. ,Xd)dxl cee dXd

N
. 1 -
using a “Monte Carlo like” estimator figmc = N Zw(X(’))
i=1
Question: Can we improve the Monte Carlo convergence rate using a

“better” desing than a purely random one?

~~»  similar direction as
stratification
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(a) random sampling

(b)

QMC Sampling =p=L @
(Sobol sequence)



Discrepancy function

Notation
> P ={XW ... XN} point set (design) in [0,1]?
> for y € [0,1]9, denote [0,y] =
vertices 0 and y)
> Vol([0, y])
» empirical volume based on point-set P

Hf’zl[O,y,-] (hyper-rectangle of

= Hf’zl i, volume of hyper-rectangle [0, y]

7 ! . 0)
Wolp([0.9]) = 1 1o (x?) = FXECLA

Discrepancy function: Ap : [0,1]¢ — [-1,1]

= \75|p([0 y]) — Vol([0, y])
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Discrepancy function

Measures of discrepancy of a point set P:

1/q
Lg-discrepancy: Dy o(P) = ||Ap|s = (/ , |Ap(y)|qdy> ,1<g<o0

[0.1]

s

x-discrepancy:  Dy(P) = ||Apl|lie = sup |Ap(y)|
yelo,1}¢
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Zaremba's identity (in 1D)

Lemma
> ) :[0,1] — R absolutely continuous with integrable derivatives
> P ={xXM . X(N)} point set in [0,1]
1
[ oo 2> w0 = [warmay o
Proof. Using identity ¢(x) = ¢(1) — fxl '(y) dy in left hand side

/ (<)o — & Zw(x“)
:w(l)—/ / ¥'(y) dy dx — %Zw(m %Z/X(/_) ¥'(y) dy

) D Ten(x?) - y] dy — (1)

N
% > Tpa(X?) - 1]
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Koksma-Hlawka inequality

N

1
P(x) dx — Z (X™)
0

1 1
<Wllarle, S+ =t

In particular, if ¢’ is integrable (or ¢ has bounded total variation) then

N
x) dx — Z

< [|9[lrvDy(P)-

The QMC quadrature error is proportional to the x-discrepancy of the
point set, provided that the function i) has bounded total variation.
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Generalization to higher dimension — Hlawka's identity

Notation
> u={u,...,ux} C{1,...,d}: subset of dimensions (without
repetition)
» |u| = k: number of dimensions in u
» For x = (x1,...,x4) € [0,1]%, denote

> xu = (Xuy,. - Xu) €[0,1]F
» z=(Xu,1): vectorst. zy=x;ifjcuandzz=1if j¢u

Lemma (Hlawka’s identity)

Let v : [0,1]? — R be an integrable function with integrable mixed first
order derivatives of any order, and let P = {X®M), ..., XM} be an
arbitrary point set in [0,1]¢. Then

N

1 i " oMl

B XD wxdx= Y ()" / af’ (%, 1)Ap (x, 1) dxa
i=1 [0.11¢ uC{1,...,d} [0,1]!v! Y

where oty _ ot is a mixed first order derivative.
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Multidimensional Koksma-Hlawka's inequality
Define the following norm
p'/p
dy..)

91l = /
= S (Lo
Multidimensional Koksma-Hlawka inequality, provided ||¢||, ,» < +00

uc{l,....d
N
Z (x)

1/p’

axu w(}’m

1 1 1 1
< |¥lpp lAPllq,q —+—-=—=+==1
|| HP,P H ”CI,CI p q p/ q/

[0»1]"

In particular, if ||¢]|1,1 < 400, then

72X

[071]d i=1

=

< [[9ll1,1Dn(P).-

Again, the QMC quadrature error is proportional to the x-discrepancy
Dy (P) provided 1) has integrable mixed first order derivatives. £PFL @



Low discrepancy point sets and sequences
Definition.

> A family P = {Pn}nen of non-nested point sets
Py = {XD, ..., XM} c[0,1]¢ is called a low discrepancy family

of point sets if
Di(P) =0 (( %8 N) )

> A point sequence S = {X1) X 1} < [0,1]¢ is called a low
discrepancy sequence if the corresponding family P = {Pn}nen of
point sets given by Py = {XM ... XM (first N terms of the
sequence) satisties

Dj(S) =0 <('°g/\jv)d)

These bounds are believed to be the best possible for point sets and
sequences.

The term (log N)? growns exponentially with the dimension and the
bound becomes useless for d > log N. However, this degeneracy EPFEL @
with the dimension is not observed in most applications.



Example 1 — random points

Consider the sequence S = {X™M), X®) ... XN 1} c[0,1]¢, with
xS U([0,1]9), i.e. a random design.

0.5 . ! How does Dj/(S) behaves?
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Example 2 — regular lattice
Consider the family P = {Pn}nen of point sets given by regular lattices

PN—{(’“H/Z,...,k"H/z),0§k,—§m—1,j—1,...,d}, N=m

m m

How does Dy (P) behaves?

Hint: observe that

DN(P) = sup [Ap(y)| > sup [Ap(t,1,...,1)]|
ye[o,1]¢ te[0,1] “PFL @



Van der Corput sequence

» Take be N, b > 2.

» Any n € Ny can be written as n = ng + mb + mb?+ ... (b-adic
expansion).

Definition. We define radical inverse of n, denoted ¢,(n) as

no n
cpb(n):f—i-b%—l-....

Obviously p : Ng — [0, 1).
b-adic Van der Corput sequence (in 1D)

S= {Sab(o)a (pb(l)7 Qpb(z)’ <. }

Example for b = 2:

It is easy to check that Dy(S) = w7 =
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Halton sequence; Hammersley point set

Halton sequence:

Let by, ..., bq > 2 be integers pairwise relatively prime.

S ={X" neNg}, X" = (pp,(n), 5,(n), . . ., 01, (n))
. : « (log N)?
> It achieves the optimal bound Dy(S) < c(d) =57+

Hammersley point sets:

. n
Pn = {X(O)a sy X(Nil)}v with X(n) = (Na Qobl(n)7 cey Sobd—l(n)>

» The family P = {Py} is non-nested
. . log N)9—1
> It achieves the better bound Dy (P) = c(d)%
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Rank-1 lattice rules

> take N € N (usually prime)

» g€ N? g=(gi,...,84) such that g; has no factor in common with
N.

» Notation: for X € [0, 1] denote {X} the fractional part of X

Rank-1 lattice rule with generating vector g:

{0,

. ’ Good choices of g lead to low
. . discrepancy non-nested point sets.
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(t — m— d) nets

Definition. Let0<t<me&Nandb>2. A (t-m-d)-net in base b is

a point set Py consisting of N = b™ points such that each elementary

rectangle of volume b*=™,

—H{ -

j=1

Example: (0-3-2)-net in base
b=2:
» point set with
N = 23 = 9 points
» each elementary

rectangle with volume
2-(m=1) — 1/8 contains

1aJ
Ev

with p1 + p> + ...+ pg = m — t contains exactly b* points.

exactly 2t = 1 point.

.




(t — m— d) nets and (t — d) sequences

Definition. A (t-d) sequence in base b is a sequence
S ={X© XM .} such that for any m > t, every block of b™ points
{xem X((“l b"=1Y, ¢ € N is a (t-m-d)-net in base b.

» The star-discrepancy of a (t-m-d)-net satisfies

Dy(P) = 0 (bf('°g ’,:’I)dl)

» The star-discrepancy of a (t-d)-sequence satisfies

Dy(S) =0 (bf ('°gNN)d)

Famous (t-d)-sequences are those of Sobol, Niederreiter and Faure.
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Controlling the error in QMC

Let
> p=E[(X)] = f[o 1 P(x
> figmc = Zi:l (XU )) for a given point set P = {X®1) ... XN)}

We have seen an “a-priori” error stimate for QMC:

I — fomc| =

1< :
9 ax = 52X < [l 0L

[0.1]¢

Not of practical use as ||¢||1,1 and Dj(P) ar not known.

Question: how can we estimate the error in QMC?
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Randomly shifted QMC

Let Py = {XD), ..., XM} be a low discrepancy point set. Take
U~ u([0,1]9)

The randomly shifted point set

N
PY = (XD Uy, XMy / /

has the same discrepancy as Py / /

Idea: generate several randomly shifted point sets with independent shifts
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Randomly shifted QMC
> Generate UD ... UK IS Uu([o,1]4)
» For each shift UY), construct the randomly shifted point set

D — (x4 gy, (x4 gy

» compute QMC estimator /f‘g?vlc using the point set P,&P

.U’QMC N Zd’ {X( + UJ)})

. N 1 (j
» Estimate p by  fiqmc = Z Zug?\ﬂc
j=1
> Notice that {X) + U} ~ 1([0,1]9) for any i and j. Hence jiguc
is unbiased and ﬂg;v,c are all independent
NG, og N)2(@—D)
> Var[figuc] = 8, oduc = E [(“giﬂc —H) ] - O( e )
» Asymptotic 1 — o confidence interval for fiqmc

~

/ ~ aQmMC QMC

HQme — Cl—a/2— 7 N flqme + Cl_app—— /K ] EpEL @



Randomly shifted QMC

Algorithm: Randomly shifted QMC.
1 Generate point set Py = (X1 ... X))
2 Generate UM, .. Ut 1 Uu([o, 1]%);

3 Forj=1,...,k, compute ﬂgawc =1 Zf\lzl P({XD + U},
4 Com (i — 1yk a0
pute figmc = 7 2_;—1 Aqmc as well as

52 _ 1 k ali) N 2.
Some = =1 2j—1(figue — amc)*;

Output figmc as well as a 1 — a confidence

(52

lo = |fiquc — a1 /2LQMC flqme + /2LQMC
o T — b) —Q
Vk Vk
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