## MATH-414 - Stochastic simulation

Lecture 7: Variance Reduction Techniques III

Prof. Fabio Nobile



### Outline

Control variates

Stratification

Latin Hypercube sampling



### Control variates

**Goal**: compute  $\mu = \mathbb{E}[Z]$  with Z output of a stochastic model

Idea: find an auxiliary random variable Y s.t.

- $ightharpoonup \mathbb{E}[Y]$  known
- Y is informative on Z (highly correlated with Z)

Then, for  $\alpha \in \mathbb{R}$  set

$$Z_{\alpha} = Z - \alpha (Y - \mathbb{E}[Y])$$

and apply Monte Carlo on  $Z_{\alpha}$  instead of Z

$$\hat{\mu}_{CV} = \frac{1}{N} \sum_{i=1}^{N} \left[ Z^{(i)} - \alpha (Y^{(i)} - \mathbb{E}[Y]) \right], \qquad (Z^{(i)}, Y^{(i)}) \stackrel{iid}{\sim} (Z, Y)$$

Clearly  $\mathbb{E}[Z_{\alpha}] = \mathbb{E}[Z] = \mu$  so  $\hat{\mu}_{N}^{CV}$  is unbiased.

Do we get varianve reduction?



### Control variates - variance minimization

 $\mathbb{V}\mathrm{ar}\left[\hat{\mu}_{ extit{CV}}
ight] = rac{\mathbb{V}\mathrm{ar}\left[ extit{Z}_{lpha}
ight]}{ extit{N}}$  and

$$\operatorname{Var}[Z_{\alpha}] = \operatorname{Var}[Z] + \alpha^{2} \operatorname{Var}[Y] - 2\alpha \operatorname{Cov}(Z, Y).$$

We can then look for the best  $\alpha_{\it opt}$  that minimizes the variance

$$\frac{d\mathbb{V}\mathrm{ar}\left[Z_{\alpha}\right]}{d\alpha} = 2\alpha\mathbb{V}\mathrm{ar}\left[Y\right] - 2\operatorname{Cov}(Z,Y) = 0 \qquad \Longrightarrow \qquad \alpha_{\mathsf{opt}} = \frac{\operatorname{Cov}(Z,Y)}{\mathbb{V}\mathrm{ar}\left[Y\right]}$$

#### Minimal variance achievable

$$\operatorname{\mathbb{V}ar}\left[Z_{\alpha_{\operatorname{opt}}}\right] = \operatorname{\mathbb{V}ar}\left[Z\right] - \frac{\operatorname{\mathsf{Cov}}(Z,Y)^2}{\operatorname{\mathbb{V}ar}\left[Y\right]} = \operatorname{\mathbb{V}ar}\left[Z\right]\left(1 - \rho_{ZY}^2\right)$$

with  $\rho_{ZY}^2 = \frac{\text{Cov}(Z,Y)^2}{\text{Var}[Z]\text{Var}[Y]}$  correlation between Z and Y.

$$\Longrightarrow \mathbb{V}\mathrm{ar}\left[Z_{\alpha_{\mathrm{opt}}}\right] \leq \mathbb{V}\mathrm{ar}\left[Z\right]$$
 and variance reduction increases as  $\rho_{ZY} \to \{-1,1\}$ . Ideal case:  $Y = \pm \gamma Z$  for which  $\rho_{ZY} = \pm 1$  and  $\mathbb{V}\mathrm{ar}\left[Z_{\alpha_{\mathrm{opt}}}\right] = 0!$ 

Useless since  $\mathbb{E}[Y] = \gamma \mathbb{E}[Z]$  unknown. But Y should resemble Z.



# Control variates - algorithm with pilot run

In practice,  $\alpha_{\it opt}$  non known but can be estimated from a pilot run

#### Algorithm: Control variate with pilot run.

- 1 Generate  $\bar{N}$  iid replicas  $(Z^{(i)}, Y^{(i)})$ ,  $i = 1, \dots, \bar{N}$  of (Z, Y)
- 2 Estimate  $\hat{\alpha}_{\rm opt}=\frac{\hat{\sigma}_{ZY}^2}{\sigma_Y^2}$  if  $\sigma_Y^2$  known, or  $\hat{\alpha}_{\rm opt}=\frac{\hat{\sigma}_{ZY}^2}{\hat{\sigma}_Y^2}$  otherwise, with

$$\hat{\sigma}_{ZY}^2 = \frac{1}{\bar{N}-1} \sum_{i=1}^{\bar{N}} (Z^{(i)} - \hat{\mu}_Z) (Y^{(i)} - \mathbb{E}[Y]), \qquad \hat{\mu}_Z = \frac{1}{\bar{N}} \sum_{i=1}^{\bar{N}} Z^{(i)}$$

- 3 Generate N iid replicas  $(Z^{(i)}, Y^{(i)})$ , i = 1, ..., N of (Z, Y)
- 4 Compute  $\hat{\mu}_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} (Z^{(i)} \hat{\alpha}_{\text{opt}}(Y^{(i)} \mathbb{E}[Y]))$
- 5 Output  $\hat{\mu}_{\text{CV}}$  and a confidence interval based on  $\hat{\sigma}_{\text{CV}}$ .

#### The estimator $\hat{\mu}_{CV}$ is

- unbiased:  $\mathbb{E}\left[\hat{\mu}_{CV}\right] = \mathbb{E}\left[\mathbb{E}\left[\hat{\mu}_{CV} \mid \hat{\alpha}_{opt}\right]\right] = \mu$
- lacktriangle with variance  $\operatorname{\mathbb{V}ar}\left[\hat{\mu}_{\mathsf{CV}}\right] = \frac{1}{N}\left(\operatorname{\mathbb{V}ar}\left[Z_{lpha_{\mathsf{opt}}}\right] + \operatorname{\mathbb{V}ar}\left[\hat{lpha}_{\mathsf{opt}}\right]\sigma_{Y}^{2}\right)$



# Control variates – one shot algorithm

Alternatively to the pilot run, one may consider a one-shot strategy

### Algorithm: Control variate - one shot

- 1 Generate N iid replicas  $(Z^{(i)}, Y^{(i)})$ , i = 1, ..., N of (Z, Y)
- 2 Estimate  $\hat{\alpha}_{\sf opt} = \frac{\hat{\sigma}_{\sf ZY}^2}{\sigma_{\sf Y}^2}$ , with

$$\hat{\sigma}_{ZY}^2 = \frac{1}{N-1} \sum_{i=1}^N (Z^{(i)} - \hat{\mu}_Z) (Y^{(i)} - \mathbb{E}[Y]), \qquad \hat{\mu}_Z = \frac{1}{N} \sum_{i=1}^N Z^{(i)}$$

- 3 Estimate  $\hat{\mu}_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} (Z^{(i)} \hat{\alpha}_{\text{opt}}(Y^{(i)} \mathbb{E}[Y]))$
- 4 Output  $\hat{\mu}_{\text{CV}}$  and a confidence interval based on  $\hat{\sigma}_{\text{CV}}$ .
  - This estimator is biased in general
  - ▶ A CLT holds  $\sqrt{N} \frac{\hat{\mu}_{\text{CV}} \mu}{\hat{\sigma}^2(Z_{\text{Corr}})} \stackrel{\text{d}}{\longrightarrow} N(0,1)$  as  $N \to \infty$  (exercise)



# Example - option pricing

 $\triangleright$   $S_t$ : value of an asset at time t, modeled by

$$dS_t = rS_t dt + \sigma S_t dW_t, \quad t \in (0, T]$$

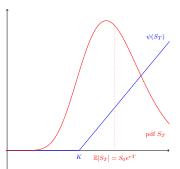
- ▶ call option: payoff  $\psi(S_T) = (S_T K)_+$ :
- **▶ Goal**: estimate (discounted) option price  $\mu = \mathbb{E}[Z] = \mathbb{E}\left[e^{-rT}\psi(S_T)\right]$

**Idea**: use asset price  $S_T$  as control variate, with  $\mathbb{E}[S_T] = S_0 e^{rT}$ .

Control variate estimator

$$\hat{\mu}_{CV} = \frac{1}{N} \sum_{i=1}^{N} Z^{(i)} - \alpha (S_T^{(i)} - S_0 e^{rT})$$
$$= \hat{\mu}_Z - \alpha (\hat{\mu}_{S_T} - S_0 e^r T)$$

Z and  $S_T$  are positively correlated. If  $\hat{\mu}_{S_T}$  is above the mean, then most likely also  $\hat{\mu}_Z$  is above the mean and we have to correct with a negative term  $-\alpha(\hat{\mu}_{S_T} - S_0 e^r T)$ , with  $\alpha > 0$ .





## Multiple control variates

In the control variate technique, one can actually use several control variates:  $\mathbf{Y} = (Y_1, \dots, Y_p)$  with known means  $\mathbb{E}[Y_1], \dots, \mathbb{E}[Y_p]$ .

$$Z_{\alpha} = Z - \sum_{i=1}^{p} \alpha_{j} (Y_{j} - \mathbb{E}[Y_{j}]) = Z - \alpha \cdot (Y - \mathbb{E}[Y])$$

Then

$$\mathbb{V}\mathrm{ar}\left[Z_{\alpha}\right] = \mathbb{E}\left[\left(Z - \mu - \alpha \cdot (\mathbf{Y} - \mathbb{E}\left[\mathbf{Y}\right])\right)^{2}\right]$$
$$= \mathbb{V}\mathrm{ar}\left[Z\right] - 2\underbrace{\mathsf{Cov}(Z, \mathbf{Y})}_{\in \mathbb{R}^{p}} \cdot \alpha + \alpha^{\top}\underbrace{\mathsf{Cov}(\mathbf{Y}, \mathbf{Y})}_{\in \mathbb{R}^{p \times p}} \alpha$$

Variance minimization:

$$egin{aligned} oldsymbol{lpha}_{\mathsf{opt}} &= \mathsf{Cov}(oldsymbol{Y}, oldsymbol{Y})^{-1}\,\mathsf{Cov}(Z, oldsymbol{Y}) \ \mathbb{V}\mathrm{ar}\left[Z_{\mathsf{Qopt}}\right] &= \mathbb{V}\mathrm{ar}\left[Z\right] - \mathsf{Cov}(Z, oldsymbol{Y})\,\mathsf{Cov}(oldsymbol{Y}, oldsymbol{Y})^{-1}\,\mathsf{Cov}(Z, oldsymbol{Y}) \end{aligned}$$

 $\alpha_{opt}$  can be seen as the solution of a linear regression problem  $Z - \mu \approx \alpha \cdot (\mathbf{Y} - \mathbb{E}[Y])$  and Monte Carlo is done only on the residual  $Z_2 = Z - \alpha \cdot (\mathbf{Y} - \mathbb{E}[Y])$ .



### Stratification

### Standard setting

- **X** random vector in  $\mathbb{R}^d$  with (joint) pdf  $f:\Omega\subset\mathbb{R}^d\to\mathbb{R}_+$
- $ightharpoonup Z = \psi(X) \in \mathbb{R}$  output quantity
- ▶ Goal: compute  $\mu = \mathbb{E}[Z] = \int \psi(x) f(x) dx$

**Idea**: partition the sample space  $\Omega$  in s non-overlapping strata  $\Omega_1, \ldots, \Omega_s$  with  $\mathbb{P}(X \in \Omega_i) = p_i$  known

Let

- $ightharpoonup f_j(x) = rac{1}{p_i} f(x) \mathbb{1}_{\Omega_j}(x)$ : conditional density to  $X \in \Omega_j$
- $lackbox{X}_j \sim f_j$ : random variable taking values only in  $\Omega_j$
- ▶  $Z_j = \psi(X_j)$ : output conditional on  $X \in \Omega_j$

Then

$$\mu = \mathbb{E}[Z] = \sum_{i=1}^{s} \mathbb{E}[Z \mid X \in \Omega_{j}] \mathbb{P}(X \in \Omega_{j}) = \sum_{i=1}^{s} \rho_{j} \mathbb{E}[Z_{j}]$$

**Idea**: use independent Monte Carlo estimators for each  $\mathbb{E}[Z_i]$ 



### Stratification

Stratified estimator

$$\hat{\mu}_{\mathsf{Str}} = \sum_{i=1}^{s} p_{j} \hat{\mu}_{j}, \quad \hat{\mu}_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} Z_{j}^{(i)}, \quad \text{with } Z_{j}^{(i)} \stackrel{\mathsf{iid}}{\sim} Z_{j}$$

### **Properties**

 $\hat{\mu}_{Str}$  is unbiased. Indeed,

$$\mathbb{E}\left[\hat{\mu}_{\mathsf{Str}}\right] = \sum_{i=1}^{s} \rho_{j} \mathbb{E}\left[\hat{\mu}_{j}\right] = \sum_{i=1}^{s} \rho_{j} \mathbb{E}\left[Z_{j}\right] = \mathbb{E}\left[Z\right].$$

- ightharpoons  $\operatorname{\mathbb{V}ar}\left[\hat{\mu}_{\mathsf{Str}}\right] = \sum_{j=1}^{s} p_{j}^{2} \operatorname{\mathbb{V}ar}\left[\hat{\mu}_{j}\right] = \sum_{j=1}^{s} p_{j}^{2} \frac{\operatorname{\mathbb{V}ar}\left[Z_{j}\right]}{N_{j}}$
- Let  $N = \sum_{j=1}^{s} N_j$  and assume  $\frac{N_j}{N} \to c_j > 0$  as  $N \to \infty$ . Then  $\lim_{N \to \infty} N \mathbb{V}\mathrm{ar}\left[\hat{\mu}_{\mathsf{Str}}\right] = \sum_j p_j^2 \sigma_j^2 / c_j < +\infty$  and

$$\frac{\hat{\mu}_{\mathsf{Str}} - \mu}{\sqrt{\mathsf{Var}[\hat{\mu}_{\mathsf{Svr}}]}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1), \quad \mathsf{as} \ \mathcal{N} \to \infty.$$

Computable  $1 - \alpha$  asymptotic confidence interval:

$$\hat{l}_{\alpha} = [\hat{\mu}_{Str} - c_{1-\alpha/2}\hat{\sigma}_{Str}, \ \hat{\mu}_{Str} + c_{1-\alpha/2}\hat{\sigma}_{Str}]$$



### Stratification

#### **Algorithm:** Stratification

- 1 for  $j=1,\ldots,s$  do
- Generate  $N_j$  iid replicas  $Z_i^{(i)}$ ,  $i=1,\ldots,N_j$  of  $Z_j$
- 3 Compute  $\hat{\mu}_j = \frac{1}{N_i} \sum_{i=1}^{N_j} Z_j^{(i)}$  and  $\hat{\sigma}_j^2 = \frac{1}{N_i 1} \sum_{i=1}^{N_j} (Z_j^{(i)} \hat{\mu}_j)^2$
- 4 end
- 5 Compute  $\hat{\mu}_{\mathsf{Str}} = \sum_{j=1}^s p_j \hat{\mu}_j$  and  $\hat{\sigma}_{\mathsf{Str}}^2 = \sum_{j=1}^s p_j^2 \frac{\hat{\sigma}_j^2}{N_j}$
- 6 Output  $\hat{\mu}_{\mathsf{Str}}$  and a confidence interval

$$\hat{\it l}_{\alpha} = [\hat{\mu}_{\mathsf{Str}} - c_{1-\alpha/2}\hat{\sigma}_{\mathsf{Str}}, \; \hat{\mu}_{\mathsf{Str}} + c_{1-\alpha/2}\hat{\sigma}_{\mathsf{Str}}]$$



# Stratification – proportional allocation

Question: for a given budget  $N = \sum_{i=1}^{s} N_i$ , how to choose  $N_i$ ?

Proportional allocation:  $N_i = Np_i$ 

$$\implies \operatorname{\mathbb{V}ar}\left[\hat{\mu}_{\mathsf{Str}}\right] = \sum_{j=1}^{s} p_{j}^{2} \frac{\operatorname{\mathbb{V}ar}\left[Z_{j}\right]}{N_{j}} = \frac{1}{N} \sum_{j=1}^{s} p_{j} \operatorname{\mathbb{V}ar}\left[Z_{j}\right]$$

**Interpretation**: define  $J \in \{1, \dots, s\}$  such that  $J = j \iff \{X \in \Omega_j\}$ .

$$\implies \operatorname{\mathbb{V}ar}\left[\hat{\mu}_{\mathsf{Str}}\right] = \frac{1}{N} \sum_{i=1}^{s} p_{j} \operatorname{\mathbb{V}ar}\left[Z \mid J = j\right] = \frac{1}{N} \mathbb{E}_{J}\left[\operatorname{\mathbb{V}ar}\left[Z \mid J\right]\right]$$

Recal total variance formula  $\mathbb{V}\mathrm{ar}\left[Z\right] = \mathbb{V}\mathrm{ar}\left[\mathbb{E}\left[Z\mid J\right]\right] + \mathbb{E}\left[\mathbb{V}\mathrm{ar}\left[Z\mid J\right]\right]$ 

$$\implies \operatorname{\mathbb{V}\mathrm{ar}}\left[\hat{\mu}_{\mathsf{Str}}\right] = \frac{1}{N} \left( \operatorname{\mathbb{V}\mathrm{ar}}\left[Z\right] - \operatorname{\mathbb{V}\mathrm{ar}}\left[\mathbb{E}\left[Z \mid J\right]\right] \right) \leq \frac{\operatorname{\mathbb{V}\mathrm{ar}}\left[Z\right]}{N} = \operatorname{\mathbb{V}\mathrm{ar}}\left[\hat{\mu}_{\mathsf{CMC}}\right]$$

Stratification with proportional allocation always leads to variance reduction.



# Example - 1d integration

Let  $X \sim \mathcal{U}(0,1)$ ,  $\psi: [0,1] \to \mathbb{R}$ ,  $Z = \psi(X)$ . Goal: compute  $\mu = \mathbb{E}\left[Z\right]$ 

#### Crude Monte Carlo

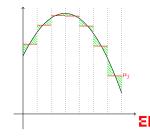
$$\hat{\mu}_{\mathit{CMC}} = rac{1}{\mathit{N}} \sum_{i=1}^{\mathit{N}} \psi(X^{(i)}),$$
  $X^{(i)} \stackrel{\mathit{iid}}{\sim} \mathcal{U}(0,1)$ 

$$\operatorname{Var}\left[\hat{\mu}_{CMC}\right] = \frac{\operatorname{Var}\left[Z\right]}{N}$$

# Stratification on s equal intervals

$$\hat{\mu}_{\mathsf{Str}} = \sum_{j=1}^s \sum_{i=1}^{N/s} \psi(X_j^{(i)}), \ X_j^{(i)} \stackrel{\mathsf{iid}}{\sim} \mathcal{U}\left(rac{j-1}{s}, rac{j}{s}
ight)$$

$$\mathbb{V}\mathrm{ar}\left[\hat{\mu}_{Str}\right] = \frac{1}{N} \sum_{i=1}^{s} \frac{\mathbb{V}\mathrm{ar}\left[Z_{j}\right]}{s}$$





## Example - 1d integration

Let  $X \sim \mathcal{U}(0,1), \ \psi : [0,1] \to \mathbb{R}, \ Z = \psi(X)$ . Goal: compute  $\mu = \mathbb{E}[Z]$ 

How many strata s and samples  $N_i$  per strata should we choose ?

#### Extreme cases:

$$ightharpoonup s=1, N_1=N \qquad \leadsto \qquad \text{Crude Monte Carlo (No stratification)}$$

$$\blacktriangleright \ s = \textit{N}, \textit{N}_{\textit{j}} = 1 \qquad \rightsquigarrow \qquad \text{randomized quadrature (mid point) rule}.$$

It can be shown (exercise) that if  $\psi \in C^1([0,1])$  and s=N then

$$\mathsf{MSE}(\hat{\mu}_{Str}) = \mathbb{E}\left[(\mu - \hat{\mu}_{Str})^2\right] \leq \frac{1}{3N^3} \max_{x \in [0,1]} |\psi'(x)|^2$$

### Convergence faster than CMC! but requires regularity of $\psi$

However, this result doesn't scale with the dimension. Consider  $\psi:[0,1]^d\to\mathbb{R}$ . If we stratify each variable with s strata we end up with  $s^d$  strata.

Assuming  $\psi \in C^1([0,1]^d)$  and placing one point per stratum we have  $\mathsf{MSE}(\hat{\mu}_{str}) \lesssim s^{-3} = N^{-\frac{3}{d}} \quad (\leadsto \mathsf{curse} \ \mathsf{of} \ \mathsf{dimensionality})$ 



## Example – stratification of Wiener process

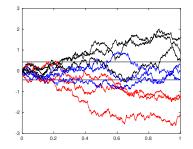
A more challenging stratification example: consider a Wiener process  $\{W_t,\ t\in[0,T]\}$  and some function  $Z=\phi(\{W_t\}_{t\in[0,T]})$ , e.g.  $Z=\max_{t\in[0,T]}W_t-\min_{t\in[0,T]}W_t$ .

**Goal**: compute  $\mu = \mathbb{E}[Z]$ 

Can we use stratification? How can we stratify the sample space of a Wiener process?

#### Idea:

- construct a stratified sample  $\{W_T^{(i)}\}_{i=1}^N$  of  $W_T \sim N(0, T)$ .
- ▶ then, for each  $W_T^{(i)}$  construct a Brownian Bridge  $\{W_t^{(i)}, t \in [0,1] \mid W_T^{(i)}\}$





## Stratification – optimal allocation

**Idea**: find best choice of  $\{N_i\}$  that minimizes variance of estimator

$$\{\mathit{N}_{j}^{*}\} = \operatorname*{argmin}_{(\mathit{N}_{1},\ldots,\mathit{N}_{s})} \sum_{j=1}^{s} \mathit{p}_{j}^{2} \frac{\mathbb{V}\mathrm{ar}\left[\mathit{Z}_{j}\right]}{\mathit{N}_{j}} \quad \text{such that } \sum_{j=1}^{s} \mathit{N}_{j} = \mathit{N}.$$

Introducing Lagrangian function

$$\mathcal{L}(\mathbf{N},\lambda) = \sum_{j=1}^{s} p_j^2 \frac{\sigma_j^2}{N_j} + \lambda (\sum_{j=1}^{s} N_j - N) \text{ with } \sigma_j^2 = \mathbb{V}\text{ar}[Z_j],$$

$$\frac{\partial \mathcal{L}}{\partial N_j} = -p_j^2 \frac{\mathbb{V}\mathrm{ar}\left[Z_j\right]}{N_j^2} + \lambda = 0 \quad \Longrightarrow \quad N_j \propto p_j \sigma_j$$

Optimal allocation: 
$$N_j^* = \frac{Np_j\sigma_j}{\sum_{k=1}^s p_k\sigma_k}$$

**Optimal variance**: 
$$\operatorname{Var}\left[\hat{\mu}_{\mathsf{Str}}^*\right] = \frac{1}{N} \left(\sum_{j=1}^s p_j \sigma_j\right)^2$$

Since optimal allocation is better than proportional allocation, it always achieves variance reduction !

# Stratification – optimal allocation

In practice, a pilot run is needed to estimate the optimal allocation.

### Algorithm: Stratification with optimal allocation

- 1 **for** j = 1, ..., s **do**
- 2 Generate  $\bar{N}_j$  iid replicas  $Z_j^{(i)}$ ,  $i=1,\ldots,N_j$  of  $Z_j$
- 3 Estimate  $\hat{\sigma}_j^2 = rac{1}{ar{N}_i-1}\sum_{i=1}^{ar{N}_j}(Z_j^{(i)}-\hat{\mu}_j)^2$
- 4 end
- 5 Choose  $N=(c_{1-lpha/2}\sum_{j=1}^s p_j\hat{\sigma}_j/{\sf tol})^2$  (to guarantee that  $|\hat{I}_{lpha,N}|<2{\sf tol})$
- 6 For  $j=1,\ldots,s$ , generate  $N_j^*=rac{Np_j\hat{\sigma}_j}{\sum_k p_k\hat{\sigma}_k}$  iid replicas  $Z_j^{(i)}$  of  $Z_j$
- 7 Compute  $\hat{\mu}_i=rac{1}{N_j^*}\sum_{i=1}^{N_j^*}Z_j^{(i)}$  and  $\hat{\mu}_{\mathsf{Str}}^*=\sum_{j=1}^s p_j\hat{\mu}_j$



# Latin Hypercube sampling

Consider

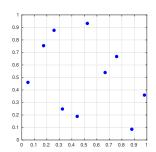
- $igspace Z = \psi(X_1, \dots, X_d)$  with  $X_j \stackrel{\text{iid}}{\sim} \mathcal{U}([0, 1])$  (or more generally  $X_j \sim f_j$  mutually independent)
- ▶ Goal: compute  $\mathbb{E}[Z] = \int_{[0,1]^d} \psi(x_1,\ldots,x_d) dx_1 \cdots dx_d$

We could stratify each variable in s strata  $\rightsquigarrow$  sample space  $[0,1]^d$  stratified in  $s^d$  strata – unaffordable for d large.

**Idea**: stratify the marginal distribution of each  $X_j \sim \mathcal{U}([0,1])$  but not the joint distribution  $X_i \sim \mathcal{U}([0,1]^2)$ 

## Latin Hypercube Sampling (LHS):

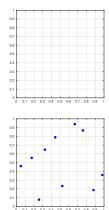
Generate a sample  $\{\boldsymbol{X}^{(1)},\ldots,\boldsymbol{X}^{(N)}\}$  such that each variable  $X_j$  is stratified in N strata with one point per stratum.

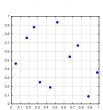




# How to generate a LHS

- ightharpoonup Divide hypercube in  $N^d$  blocks
- Place one uniformly distributed point in each diagonal block
- ► Permute columns
- Permute rows







# LHS – Algorithm

### **Algorithm: LHS**

- 1 Generate N iid points  $\boldsymbol{U}^{(i)} \stackrel{\text{iid}}{\sim} \mathcal{U}((0,1)^d)$ ,  $i = 1, \dots, N$
- 2 Generate d independent permutations  $\pi_j$ ,  $j=1,\ldots,d$  of  $\{1,\ldots,N\}$ . Let  $\boldsymbol{\pi}^{(i)}=(\pi_1(i),\pi_2(i),\ldots,\pi_d(i))$
- 3 Return  $X^{(i)} = \frac{\pi^{(i)} 1 + U^{(i)}}{N}, \quad i = 1, \dots, N.$

LHS estimator for  $\mu = \mathbb{E}\left[Z\right] = \mathbb{E}\left[\psi(\textbf{\textit{X}})\right]$ 

$$\hat{\mu}_{LHS} = \frac{1}{N} \sum_{i=1}^{N} \psi(\boldsymbol{X}^{(i)})$$



## LHS – Properties

- $ightharpoonup X^{(i)} \sim \mathcal{U}((0,1)^d)$  (not independent, though)
- ▶ The LHS estimator is unbiased,  $\mathbb{E}\left[\hat{\mu}_{LHS}\right] = \mathbb{E}\left[\psi(X)\right]$ .
- ► Result by [A. Owen 1997]

$$\operatorname{\mathbb{V}ar}\left[\hat{\mu}_{\mathsf{LHS}}\right] \leq \frac{\operatorname{\mathbb{V}ar}\left[Z\right]}{N-1}.$$

Hence  $\lim_{N\to\infty} \mathbb{V}\mathrm{ar}\left[\hat{\mu}_{\mathsf{LHS}}\right]/\mathbb{V}\mathrm{ar}\left[\hat{\mu}_{\mathsf{CMC}}\right] \leq 1$ .



## LHS - on variance of the estimator

- ▶ suppose  $\psi$  is of the form  $\psi(\mathbf{X}) = \mu + \sum_{i=1}^{d} \psi_j(X_j)$ Then, the LHS estimator corresponds to a stratified estimator with N strata on each function  $\psi_i \leadsto \text{super-canonical rate}$ .
- $\blacktriangleright$  For  $\psi$  arbitrary, define

$$\hat{\psi}_j(x_j) = \mathbb{E}\left[\psi(\mathbf{X}) - \mu \mid X_j = x_j\right] = \int_{[0,1]^{d-1}} (\psi(x_1, \dots, x_d) - \mu) \, d\mathbf{x}_{\sim j}$$

with  $\mathbf{x}_{\sim j} = (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_d)$ , and

$$\psi^{\mathsf{add}}(\boldsymbol{X}) = \mu + \sum_{j=1}^d \hat{\psi}_j(x_j).$$

### Proposition. [Stein 1987]

$$\mathbb{V}\mathrm{ar}\left[\hat{\mu}_{LHS}\right] = \frac{\mathbb{V}\mathrm{ar}\left[\psi - \psi^{add}\right]}{N} + o\left(\frac{1}{N}\right).$$

Moreover, if 
$$\mathbb{E}\left[\psi(\mathbf{X})^4\right] < +\infty$$
, then  $\sqrt{N}(\hat{\mu}_{LHS} - \mu) \xrightarrow{d} N(0, \mathbb{V}\mathrm{ar}\left[\psi - \psi^{add}\right])$  as  $N \to \infty$ .



### LHS - error estimation

The previous result can not be used to construct computable asymptotic confidence intervals as  $\psi^{add}$  is not know.

Simple idea to estimate the LHS error:

- ▶ Generate K independent LHS estimators  $\hat{\mu}_{LHS}^{(i)}$ , i = 1, ..., K
- compute the sample mean  $\hat{\mu}_{LHS} = \frac{1}{K} \sum_{i=1}^{K} \hat{\mu}_{IHS}^{(j)}$
- estimate  $Var[\hat{\mu}_{LHS}]$  by sample variance estimator

#### Algorithm: LHS estimator

- 1 Generate K independent LHS designs  $\{X^{(i,j)}\}_{i=1}^N$  of size N, for  $j=1,\ldots,K$ .
- 2 For each desing compute  $\hat{\mu}_{LHS}^{(j)} = \frac{1}{N} \sum_{i=1}^{N} \psi(X^{(i,j)})$ .
- 3 Compute  $\hat{\mu}_{\mathsf{LHS}} = \frac{1}{K} \sum_{j=1}^K \hat{\mu}_{\mathsf{LHS}}^{(j)}$  and

$$\hat{\sigma}_{\mathsf{LHS}}^2 = rac{1}{K-1} \sum_{j=1}^K \left( \hat{\mu}_{\mathit{LHS}}^{(j)} - \hat{\mu}_{\mathsf{LHS}} \right)^2$$

4 Output  $\hat{\mu}_{\text{LHS}}$  and the confidence interval

$$\hat{l}_{lpha} = [\hat{\mu}_{\mathsf{LHS}} - c_{1-lpha/2} \frac{\hat{\sigma}_{\mathsf{LHS}}}{\sqrt{K}}, \ \hat{\mu}_{\mathsf{LHS}} + c_{1-lpha/2} \frac{\hat{\sigma}_{\mathsf{LHS}}}{\sqrt{K}}].$$

