MATH-414 — Stochastic simulation

Lecture 7: Variance Reduction Techniques Il

Prof. Fabio Nobile
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Control variates

Goal: compute 1 = E[Z] with Z output of a stochastic model

Idea: find an auxiliary random variable Y s.t.
» E[Y] known
> Y is informative on Z (highly correlated with Z)

Then, for o € R set
Zo=Z—-a(Y-E[Y])

and apply Monte Carlo on Z, instead of Z

N
1 _ . ; A iid

Ao = () _ (n _ @)y 1S (7
fiev = E [Z a(Y E[Y])], (2, YWy~ (Z,Y)

i=1

Clearly E[Z,] = E[Z] = p s0 Ai§¥ is unbiased.

Do we get varianve reduction? EPEL @



Control variates - variance minimization

Var [ficv] = % and

Var [Z,] = Var [Z] + a*Var [Y] — 2a Cov(Z, Y).

We can then look for the best ¢ that minimizes the variance

dVar[Z,]
do

Cov(Z,Y)

=2aVar[Y]-2Cov(Z,Y)=0 = Qopt = 7 V]

Minimal variance achievable

Cov(Z,Y)?

Var [Z, Var[V]

o) = Var[Z] — = Var[Z] (1 - pZy)

2
with p%, = % correlation between Z and Y.

= Var [Z,,,] < Var[Z] and variance reduction increases as
pzy — {—1,1}. Ideal case: Y = +~Z for which pzy = +1 and
Var [Zaopt] =0l

Useless since E[Y] = vE [Z] unknown. But Y should resemble Z. Bk @



Control variates — algorithm with pilot run

In practice, copr NON known but can be estimated from a pilot run

Algorithm: Control variate with pilot run.
1 Generate N iid replicas (Z(), Y()), j=1,. N of (Z,Y)

2
2 Estimate Gopt = a% if O'Y known, or dopt = Az otherwise, with
Y

N N
. 1 i
Uzv— Z —E[Y])7 MZZEZZ()
P i=1
3 Generate N iid replicas (Z(), YD), j=1,...,N of (Z,Y)

4 Compute ficy = & SN (ZD — Gope( YD) —E[Y]))
5 Output ficy and a confidence interval based on ¢y .

The estimator ficy is
» unbiased: E[ficv] =E[E [ficy | Gopt]] = 1
> with variance Var [ficv] = & (Var [Za,,,] + Var [fop] 0% )
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Control variates — one shot algorithm

Alternatively to the pilot run, one may consider a one-shot strategy

Algorithm: Control variate — one shot
1 Generate N iid replicas (Z(), YD), i =1,...,N of (Z,Y)

A2

2 Estimate dopt = 74, with
Y

N
.1 ,-
67y = —IE )*NZ *E[Y])» “Z:NE z0

3 Estimate ficy = & SN [(Z0) — Gope(Y) — E[Y]))
4 Output ficy and a confidence interval based on ¢y .

» This estimator is biased in general

> A CLT holds /N ’ﬁ(c} “) N N(0,1) as N — oo (exercise)
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Example — option pricing
» S;: value of an asset at time t, modeled by

dSt = rSt dt + O'St th, te (O, T]

» call option: payoff ¥(S71) = (ST — K)4:
» Goal: estimate (discounted) option price
j=E[Z] = [e~Ty(S7)
Idea: use asset price St as control
variate, with E[St] = Spe'”.

Control variate estimator /“\
/ (Sr)
L\~ 50 () T /
ﬂcv = N ; Z(’) — 05(5-,— — SOe’ ) // \

= fiz — a(fis; — Soe'T) /

Z and St are positively correlated. /
If fis, is above the mean, then most S/
likely also [iz is above the mean and B K ElSy] = sy

we have to correct with a negative =PEL @
term —a(fis, — Spe’ T), with « > 0.




Multiple control variates
In the control variate technique, one can actually use several control
variates: Y = (Y1,...,Y},) with known means E[Y1],...,E[Y}].

za—Z—iajm—lamn—Z—a-(Y—E[YD

Then
Var[Z,] =E [(Z — p—a- (Y —E[Y]))?]

=Var[Z] —2Cov(Z,Y)-a+a' Cov(Y,Y)a
—— ——

€Rp ERPXP

Variance minimization:
Qopt = COV( Y, Y)_l COV(Z7 Y)

Var [Za,,] = Var[Z] — Cov(Z, Y) Cov(Y, Y) " Cov(Z, Y)
Qpr Can be seen as the solution of a linear regression problem
Z—p=a-(Y—=E[Y]) and Monte Carlo is done only on the =PEL @

residual Z, =27 —a- (Y —E[Y]).



Stratification
Standard setting
» X random vector in R with (joint) pdf f : Q C RY — R,
» Z = (X) € R output quantity
> Goal: compute u =E[Z] = [¢(x)
Idea: partition the sample space 2 in s non-overlapping strata
Q1,...,Qs with P(X € ;) = p; known
Let
> fi(x) = P%_f(x)]lgj(x): conditional density to X € Q;
» X; ~ f;: random variable taking values only in €2;
» Z; =1(X;): output conditional on X € Q;

Then

p=E[Z] = ZE[Z| X e QP(X € Q) ijE[Z]

Idea: use independent Monte Carlo estimators for each E [Z]] ePFL @



Stratification
Stratified estimator

s N;
. . . 1 i . i) iid
fiser = E Piftis [ = 3 E Zj( ) with Zj() ~ Z
j=1 J =1

Properties
» [isy is unbiased. Indeed,

Elise] = > pE] =Y pE[Z] =E[Z].
Jj=1 J=1

> Var[fse] = st':l P,'QV&T (] = ZJS':1 wafvigzj]
> Let N =37, N; and assume M ¢ >0as N— oco. Then
im0 NVar [fis] = 3-; p7o7/¢j < 400 and
fisee —
Computable 1 — o asymptotic confidence interval:

T = [fiser — Cl—a/205tr, fistr + C1—a /205w ik @

N N(0,1), as N — oo.



Stratification

Algorithm: Stratification

1forj=1,...,sdo
2 Generate N; iid replicas Zj('), i=1,...,N;of Z
N N, (i N N; i oA
3 Compute fi; = ﬁj >t Zj( ! and o7 = ﬁ Zi:l(zj( ) )?
4 end

~2
s 20;

N s A A2
Compute [y = Zj:l piftj and G5, = Zj:l Pj /\;J
Output fisi, and a confidence interval

(= B

lo = [ﬂStr - Cl—a/26'Str7 fistr + Cl—o(/za'Str]
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Stratification — proportional allocation
Question: for a given budget N = Z, 1 Nj, how to choose N;?

Proportional allocation: N; = Np;
s s
Var[Z] 1
pj2 NJ == N E ijar [ZJ]
j=t

j=1

= Var [fist] =

Interpretation: define J € {1,...,s} such that J =/ < {X € Q;}.
—  Varp ]—li Var[Z | J=j] = ~Ej[Var[Z | J]
,uStr—anlpj _./—N J

Recal total variance formula Var [Z] = Var [E[Z | J]] + E[Var[Z | J]]

Var[Z]
N

—  Var[fisu] = — (Var[Z] Var[E[Z | J]]) < = Var [ficmc]

Stratification with proportional allocation always leads to variance
reduction. =PrL @



Example — 1d integration

Let X ~U(0,1), ¥ :[0,1] = R, Z = ¢(X). Goal: compute = E [Z]

Crude Monte Carlo

N
o1 ()
fieme = Zdﬂ(X ),
i=1

XD % 14(0,1)

Var [Z]

Var [ficmc] = N

Stratification on s equal intervals

s N/s
ﬂStr = Z ZZZ’(XJ(I))»
j=1 i=1
X0 u (5 )
S S

1 < Var[Z]
Var[isy] = 1 >
N = S
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Example — 1d integration
Let X ~4(0,1), ¥ :[0,1] = R, Z = ¢(X). Goal: compute = E [Z]
How many strata s and samples N; per strata should we choose ?

Extreme cases:
> s=1N =N o Crude Monte Carlo (No stratification)

> s=NN =1 ~ randomized quadrature (mid point) rule.

It can be shown (exercise) that if ¢» € C1([0,1]) and s = N then
N R 1
MSE(fiser) = B [(1n — fisr)] < g5 max [v/(x)*

Convergence faster than CMC! but requires regularity of 1

However, this result doesn't scale with the dimension. Consider
¥ [0,1]¢ — R. If we stratify each variable with s strata we end up with
s? strata.

Assuming ¢ € C*([0,1]?) and placing one point per stratum we have
MSE(fistr) S s73 = N—3  (~ curse of dimensionality) EPFL @



Example — stratification of Wiener process

A more challenging stratification example: consider a Wiener process
{W,, t €0, T]} and some function Z = ¢({ W, }¢epo, 1)), €-8-
Z= MaXe(o,T] W; — mine(o, 7] W.

Goal: compute p =E[Z]

Can we use stratification? How can we stratify the sample space of a
Wiener process?

ldea:

> construct a stratified sample
{(WIN | of Wr ~ N(O, T).

» then, for each W;'.) construct a
Brownian Bridge

(W, tefo,1]| wily




Stratification — optimal allocation

Idea: find best choice of {N;} that minimizes variance of estimator

* : ZVar [Z] .
{N/} = argmin Z : such that Z N;=N.

Ni,...,Ns) j=1 J j=1

Introducing Lagrangian function

L(N,X) =377, P} N -+ Ay N — N) with 07 = Var [Z)],

375__ » Var [Z]]
on; — P

+A=0 > NjO(ij'j

ij(Tj

Optimal allocation: N} = ————~—
Zk=1 PkO Kk

J

2
Optimal variance: Var [¢,] = + (ijl pjaj)

Since optimal allocation is better than proportional allocation, it always
achieves variance reduction ! cPFL @



Stratification — optimal allocation

In practice, a pilot run is needed to estimate the optimal allocation.

Algorithm: Stratification with optimal allocation

1forj=1...,sdo
2 | Generate N, iid repIicas_Zj('), i=1,...,N;of Z
: . NoG)  a
3 | Estimate 67 = ﬁ Z,’:l(zj( )
4 end
5 Choose N = (C1_q /2 Y5, Pj6j/tol)? (to guarantee that |1, n| < 2tol)

J
6 For j=1,...,s, generate N = i iid replicas Z;" of Z;

. N' (i N .
7 Compute fi; = % S Zj(') and fig, = >0, pifly
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Latin Hypercube sampling
Consider
> Z =(Xy,..., Xq) with X; S 24([0, 1])
(or more generally X; ~ f; mutually independent)

» Goal: compute E[Z] = W(x1, ...y Xg)dxy - - dxy
[0,1]¢

We could stratify each variable in s strata ~»  sample space [0, 1]¢
stratified in s¢ strata — unaffordable for d large.

Idea: stratify the marginal distribution of each X; ~ #/([0, 1]) but not the
joint distribution X; ~ ([0, 1]?)

Latin Hypercube Sampling (LHS): osf

Generate a sample {X(1)_ ... x(M} :Z ¢
such that each variable X; is os|, *
stratified in V strata with one point o .
per stratum. :: ..

0
0 01 02 03 04 05 06 07 08 09 1



How to generate a LHS

» Divide hypercube in N9 blocks

» Place one uniformly distributed
point in each diagonal block

» Permute columns

» Permute rows

02 03 04 05 06 07 08 09 1

02 03 04 05 06 07 08 09 1

02 03 04 05 06 07 08 09 1

PFL



LHS — Algorithm

Algorithm: LHS

1 Generate N iid points UM S 74((0,1)7), i=1,...,N

2 Generate d independent permutations 7, j =1,...,d of {1,..

Let 7() = (m1(i), ma(i), . . ., wa(i))

, 0 0.
3 Return X() = % i=1 N.

P

. N}

LHS estimator for u = E[Z] = E [¢(X)]

N
. 1 ;
fiks = 4 ;dJ(X( )
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LHS — Properties

> X ~ 2((0,1)4) (not independent, though)
» The LHS estimator is unbiased, E [fiins] = E [¢(X)].
> Result by [A. Owen 1997]

Var [Z]
N—-1"

Var [fitns] <

Hence limy_, o Var [fiLps] /Var [ficmc] < 1.
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LHS - on variance of the estimator

> suppose 1 is of the form ¢(X) = pu + 27:1 (X))
Then, the LHS estimator corresponds to a stratified estimator with
N strata on each function ¢»; ~»  super-canonical rate.

» For ¢ arbitrary, define
G0 = BRI 1 X =x] = [ x) — )by
with x; = (x1,...,Xj—1,Xj+1,-..,Xq), and

d

VXY = 1D di().

i=1

Proposition. [Stein 1987]
Va _ add 1
Var [/,)fLHS] = % +o (N) .
Moreover, if E [1/)(X)4] < +00, then
VN(fiens — 12) —2 N(O, Var [ — 12%]) as N — oo. EPFL @



LHS — error estimation

The previous result can not be used to construct computable asymptotic
confidence intervals as 1?9 is not know.

Simple idea to estimate the LHS error:
» Generate K independent LHS estimators ﬂ(Li,)_,S, i=1

» compute the sample mean i s = % J.K:1 ,&%’2,5

K

geeey

» estimate Var [fi;ps] by sample variance estimator

Algorithm: LHS estimator
1 Generate K independent LHS designs { XN of size N, for
ji=1...,K.
A 0)

2 For each desmg compute Bins = Z, L (XU,

3 Compute fiins = & i 1u(L,)_,5 and

2
A2 1 K ()
OLHS = K—1 24j=1 (:uLHS — fLks

4 Output fiLns and the confidence interval
LHS

= [fns — C1—a)2 VK fitns + C1a)2

LHS]
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